I understand pretty well how transparent hugepages work, and that any allocation, such as those performed by malloc
may be satisfied by a huge page.
What I'd like to know, is if there is any check I can make (possibly heuristic) after an allocation to determine if the memory is backed by a huge page.
Allocating huge pages of a specific size Some platforms support multiple huge page sizes. To allocate huge pages of a specific size, precede the huge pages boot command parameters with a huge page size selection parameter hugepagesz=<size> .
The malloc() function reserves a block of storage of size bytes. Unlike the calloc() function, malloc() does not initialize all elements to 0. The maximum size for a non-teraspace malloc() is 16711568 bytes.
HugePages is a feature integrated into the Linux kernel 2.6. Enabling HugePages makes it possible for the operating system to support memory pages greater than the default (usually 4 KB).
Open the /etc/sysctl. conf file with root permissions and add the line to it manually. Reboot for these changes to take effect. Once again, check your system's allocation of huge pages in the /proc/meminfo virtual file.
You can determine the exact status of any page, including whether it is backed by a transparent (or non-transparent) hugepage by looking up the "pfn" (page frame number) in the /proc/kpageflags
file. You get the pfn for a page by reading from the /proc/$PID/pagemap
file for your process, which is indexed by virtual address.
Unfortunately, both the pfn
value from pagemap
1 and the entire /proc/kpageflags
file are accessible only to root users. Still if you can run your process as root at least in the testing or benchmarking scenario you are interested in, this works well.
I wrote a small library called page-info which does the relevant parsing for you. Give it a range of memory and it will return you info on each page, including whether it is present in memory, backed by a hugepage, etc.
For example, running the included test process as sudo ./page-info-test THP
gives the following output:
PAGE_SIZE = 4096, PID = 18868
size memset FLAG SET UNSET UNAVAIL
0.25 MiB BEFORE THP 0 1 64
0.25 MiB AFTER THP 0 65 0
0.50 MiB BEFORE THP 0 1 128
0.50 MiB AFTER THP 0 129 0
1.00 MiB BEFORE THP 0 1 256
1.00 MiB AFTER THP 0 257 0
2.00 MiB BEFORE THP 0 1 512
2.00 MiB AFTER THP 0 513 0
4.00 MiB BEFORE THP 0 1 1024
4.00 MiB AFTER THP 512 513 0
8.00 MiB BEFORE THP 0 1 2048
8.00 MiB AFTER THP 1536 513 0
16.00 MiB BEFORE THP 0 1 4096
16.00 MiB AFTER THP 3584 513 0
32.00 MiB BEFORE THP 0 1 8192
32.00 MiB AFTER THP 7680 513 0
64.00 MiB BEFORE THP 0 1 16384
64.00 MiB AFTER THP 15872 513 0
128.00 MiB BEFORE THP 0 1 32768
128.00 MiB AFTER THP 32256 513 0
256.00 MiB BEFORE THP 0 1 65536
256.00 MiB AFTER THP 65024 513 0
512.00 MiB BEFORE THP 0 1 131072
512.00 MiB AFTER THP 124416 6657 0
1024.00 MiB BEFORE THP 0 1 262144
1024.00 MiB AFTER THP 0 262145 0
DONE
The UNAVAIL
column means that no information about the mapping was available - usually because the page has never been accesses and so isn't yet backed by any page at all. You can see that for these "largeish" allocations only a single page is mapped in following the allocation, since we haven't touched the memory.
The AFTER
rows are the same information after calling memset()
on the entire allocation, which causes all pages to be physically allocated. Here we can see that no allocations are backed by transparent hugepages until we hit allocations of 4 MiB, at which point the majority of each allocation is backed by THP, except for 513 pages (which turn out to be at the edges of the allocated region). At 512 MiB the system starts running out of available hugepages but still satisfies most of the allocation, but at 1024 MiB the entire allocation is satisfied with small pages.
This library isn't production ready so don't use it for anything critical (e.g., some failures simply call exit()
). Contributions welcome.
1 Since kernel 4.0 approximately, before that the pfn was accessible to non-root user processes. From 4.0 to 4.1 or thereabouts, the entire pagemap
was off-limits to non-root processes, but since then the file is again available but with the pfn masked out (it will always appear as zero).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With