I want to take an RGB image and convert it to a black and white RGB image, where a pixel is black if its HSV value is between a certain range and white otherwise.
Currently I create a new image, then create a list of new pixel values by iterating through its data, then .putdata()
that list to form the new image.
It feels like there should be a much faster way of doing this, e.g. with .point()
, but it seems .point()
doesn't get given pixels but values from 0 to 255 instead. Is there a .point()
transform but on pixels?
Ok, this does work (fixed some overflow errors):
import numpy, Image
i = Image.open(fp).convert('RGB')
a = numpy.asarray(i, int)
R, G, B = a.T
m = numpy.min(a,2).T
M = numpy.max(a,2).T
C = M-m #chroma
Cmsk = C!=0
# Hue
H = numpy.zeros(R.shape, int)
mask = (M==R)&Cmsk
H[mask] = numpy.mod(60*(G-B)/C, 360)[mask]
mask = (M==G)&Cmsk
H[mask] = (60*(B-R)/C + 120)[mask]
mask = (M==B)&Cmsk
H[mask] = (60*(R-G)/C + 240)[mask]
H *= 255
H /= 360 # if you prefer, leave as 0-360, but don't convert to uint8
# Value
V = M
# Saturation
S = numpy.zeros(R.shape, int)
S[Cmsk] = ((255*C)/V)[Cmsk]
# H, S, and V are now defined as integers 0-255
It is based on the Wikipedia's definition of HSV. I'll look it over as I get more time. There are definitely speedups and maybe bugs. Please let me know if you find any. cheers.
Results:
starting with this colorwheel:
I get these results:
Hue:
Value:
Saturation:
EDIT 2: This now returns the same results as Paul's code, as it should...
import numpy, scipy
image = scipy.misc.imread("test.png") / 255.0
r, g, b = image[:,:,0], image[:,:,1], image[:,:,2]
m, M = numpy.min(image[:,:,:3], 2), numpy.max(image[:,:,:3], 2)
d = M - m
# Chroma and Value
c = d
v = M
# Hue
h = numpy.select([c ==0, r == M, g == M, b == M], [0, ((g - b) / c) % 6, (2 + ((b - r) / c)), (4 + ((r - g) / c))], default=0) * 60
# Saturation
s = numpy.select([c == 0, c != 0], [0, c/v])
scipy.misc.imsave("h.png", h)
scipy.misc.imsave("s.png", s)
scipy.misc.imsave("v.png", v)
which gives hue from 0 to 360, saturation from 0 to 1 and value from 0 to 1. I looked at the results in image format, and they seem good.
I wasn't sure by reading your question whether it was only the "value" as in V from HSV that you were interested in. If it is, then you can bypass most of this code.
You can then select pixels based on those values and set them to 1 (or white/black) using something like:
newimage = (v > 0.3) * 1
This solution is based on Paul's code. I fixed DivByZero Bug and implemented RGB to HSL. There is also HSL to RGB:
import numpy
def rgb_to_hsl_hsv(a, isHSV=True):
"""
Converts RGB image data to HSV or HSL.
:param a: 3D array. Retval of numpy.asarray(Image.open(...), int)
:param isHSV: True = HSV, False = HSL
:return: H,S,L or H,S,V array
"""
R, G, B = a.T
m = numpy.min(a, 2).T
M = numpy.max(a, 2).T
C = M - m #chroma
Cmsk = C != 0
# Hue
H = numpy.zeros(R.shape, int)
mask = (M == R) & Cmsk
H[mask] = numpy.mod(60 * (G[mask] - B[mask]) / C[mask], 360)
mask = (M == G) & Cmsk
H[mask] = (60 * (B[mask] - R[mask]) / C[mask] + 120)
mask = (M == B) & Cmsk
H[mask] = (60 * (R[mask] - G[mask]) / C[mask] + 240)
H *= 255
H /= 360 # if you prefer, leave as 0-360, but don't convert to uint8
# Saturation
S = numpy.zeros(R.shape, int)
if isHSV:
# This code is for HSV:
# Value
V = M
# Saturation
S[Cmsk] = ((255 * C[Cmsk]) / V[Cmsk])
# H, S, and V are now defined as integers 0-255
return H.swapaxes(0, 1), S.swapaxes(0, 1), V.swapaxes(0, 1)
else:
# This code is for HSL:
# Value
L = 0.5 * (M + m)
# Saturation
S[Cmsk] = ((C[Cmsk]) / (1 - numpy.absolute(2 * L[Cmsk]/255.0 - 1)))
# H, S, and L are now defined as integers 0-255
return H.swapaxes(0, 1), S.swapaxes(0, 1), L.swapaxes(0, 1)
def rgb_to_hsv(a):
return rgb_to_hsl_hsv(a, True)
def rgb_to_hsl(a):
return rgb_to_hsl_hsv(a, False)
def hsl_to_rgb(H, S, L):
"""
Converts HSL color array to RGB array
H = [0..360]
S = [0..1]
l = [0..1]
http://en.wikipedia.org/wiki/HSL_and_HSV#From_HSL
Returns R,G,B in [0..255]
"""
C = (1 - numpy.absolute(2 * L - 1)) * S
Hp = H / 60.0
X = C * (1 - numpy.absolute(numpy.mod(Hp, 2) - 1))
# initilize with zero
R = numpy.zeros(H.shape, float)
G = numpy.zeros(H.shape, float)
B = numpy.zeros(H.shape, float)
# handle each case:
mask = (Hp >= 0) == ( Hp < 1)
R[mask] = C[mask]
G[mask] = X[mask]
mask = (Hp >= 1) == ( Hp < 2)
R[mask] = X[mask]
G[mask] = C[mask]
mask = (Hp >= 2) == ( Hp < 3)
G[mask] = C[mask]
B[mask] = X[mask]
mask = (Hp >= 3) == ( Hp < 4)
G[mask] = X[mask]
B[mask] = C[mask]
mask = (Hp >= 4) == ( Hp < 5)
R[mask] = X[mask]
B[mask] = C[mask]
mask = (Hp >= 5) == ( Hp < 6)
R[mask] = C[mask]
B[mask] = X[mask]
m = L - 0.5*C
R += m
G += m
B += m
R *=255.0
G *=255.0
B *=255.0
return R.astype(int),G.astype(int),B.astype(int)
def combineRGB(r,g,b):
"""
Combines separated R G B arrays into one array = image.
scipy.misc.imsave("rgb.png", combineRGB(R,G,B))
"""
rgb = numpy.zeros((r.shape[0],r.shape[1],3), 'uint8')
rgb[..., 0] = r
rgb[..., 1] = g
rgb[..., 2] = b
return rgb
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With