I have a set of point cloud, and I would like to test if there is a corner in a 3D room. So I would like to discuss my approach and if there is a better approach or not in terms of speed, because I want to test it on mobile phones.
I will try to use hough tranform to detect lines, then I will try to see if there are three lines that are intersecting and they make a two plane that are intersecting too.
If the point cloud data comes from a depth sensor, then you have a relatively dense sampling of your walls. One thing I found that works well with depth sensors (e.g. Kinect or DepthSense) is a robust version of the RANSAC procedure that @MartinBeckett suggested. Instead of picking 3 points at random, pick one point at random, and get the neighboring points in the cloud. There are two ways to do that:
The next step is to generate a plane equation from that group of 3D points. You can use PCA on their 3D coordinates to get the two most significant eigenvectors, which define the plane surface (the last eigenvector should be the normal).
From there, the RANSAC algorithm proceeds as usual: check how many other points in the data are close to that plane, and find the plane(s) with maximal support. I found it better to find the largest support plane, remove the supporting 3D points, and run the algorithm again to find other 'smaller' planes. This way you may be able to get all the walls in your room.
EDIT:
To clarify the above: the support of a hypothesized plane is the set of all 3D points whose distance from that plane is at most some threshold (e.g. 10 cm, should depend on the depth sensor's measurement error model). After each run of the RANSAC algorithm, the plane that had the largest support is chosen. All the points supporting that plane may be used to refine the plane equation (this is more robust than just using the neighboring points) by performing PCA/linear regression on the support set.
In order to proceed and find other planes, the support of the previous iteration should be removed from the 3D point set, so that remaining points lie on other planes. This may be repeated as long as there are enough points and best plane fit error is not too large. In your case (looking for a corner), you need at least 3 perpendicular planes. If you find two planes with large support which are roughly parallel, then they may be the floor and some counter, or two parallel walls. Either the room has no visible corner, or you need to keep looking for a perpendicular plane with smaller support.
Normal approach would be ransac
Another approach if you know that the planes are near vertical or near horizontal.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With