I've been playing around with OpenCV (cv2) and detecting lines and shapes. Say that my daughter drew a drawing, like so:
I am trying to write a Python script that would analyze the drawing and convert it into hard lines/shapes, something like:
That being said, I have installed opencv and tried to play around with it, but have had no luck aside from being able to draw a single vertical line through the image. Below is my code so far, any pointers or suggestions as to how I should go about doing this with opencv would be greatly appreciated.
import cv2
import numpy as np
class File(object):
def __init__(self, filename):
self.filename = filename
def open(self, filename=None, mode='r'):
if filename is None:
filename = self.filename
return cv2.imread(filename), open(filename, mode)
def save(self, image=None, filename_override=None):
filename = "output/" + self.filename.split('/')[-1]
if filename_override:
filename = "output/" + filename_override
return cv2.imwrite(filename, image)
class Image(object):
def __init__(self, image):
self.image = image
def grayscale(self):
return cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
def edges(self):
return cv2.Canny(self.image, 0, 255)
def lines(self):
lines = cv2.HoughLinesP(self.image, 1, np.pi/2, 6, None, 50, 10)
for line in lines[0]:
pt1 = (line[0],line[1])
pt2 = (line[2],line[3])
cv2.line(self.image, pt1, pt2, (0,0,255), 2)
if __name__ == '__main__':
File = File('images/a.png')
Image = Image(File.open()[0])
Image.image = Image.grayscale()
Image.lines()
File.save(Image.image)
Unfortunately, for a simple square drawing, all I get back is:
where the vertical line in the box is the output from the code.
Here is my attempt. It's in C++, but can be easily ported to python since most are OpenCV functions.
A brief outline of the method, comments in the code should help, too.
findContours
For each contour, get convex hull (to handle open contours), and classify according to circularity. Handle each shape differently.
NOTES:
UPDATE - Just noticed that in OpenCV 3.0.0 there is the function minEnclosingTriangle. This might be helpful to use instead of my procedure to find the triangle vertices. However, since inserting this function in the code would be trivial, I'll leave my procedure in the code in case one doesn't have OpenCV 3.0.0.
The code:
#include <opencv2\opencv.hpp>
#include <vector>
#include <iostream>
using namespace std;
using namespace cv;
/////////////////////////////////////////////////////////////////////////////////////////////
// Thinning algorithm from here:
// https://github.com/bsdnoobz/zhang-suen-thinning
/////////////////////////////////////////////////////////////////////////////////////////////
void thinningIteration(cv::Mat& img, int iter)
{
CV_Assert(img.channels() == 1);
CV_Assert(img.depth() != sizeof(uchar));
CV_Assert(img.rows > 3 && img.cols > 3);
cv::Mat marker = cv::Mat::zeros(img.size(), CV_8UC1);
int nRows = img.rows;
int nCols = img.cols;
if (img.isContinuous()) {
nCols *= nRows;
nRows = 1;
}
int x, y;
uchar *pAbove;
uchar *pCurr;
uchar *pBelow;
uchar *nw, *no, *ne; // north (pAbove)
uchar *we, *me, *ea;
uchar *sw, *so, *se; // south (pBelow)
uchar *pDst;
// initialize row pointers
pAbove = NULL;
pCurr = img.ptr<uchar>(0);
pBelow = img.ptr<uchar>(1);
for (y = 1; y < img.rows - 1; ++y) {
// shift the rows up by one
pAbove = pCurr;
pCurr = pBelow;
pBelow = img.ptr<uchar>(y + 1);
pDst = marker.ptr<uchar>(y);
// initialize col pointers
no = &(pAbove[0]);
ne = &(pAbove[1]);
me = &(pCurr[0]);
ea = &(pCurr[1]);
so = &(pBelow[0]);
se = &(pBelow[1]);
for (x = 1; x < img.cols - 1; ++x) {
// shift col pointers left by one (scan left to right)
nw = no;
no = ne;
ne = &(pAbove[x + 1]);
we = me;
me = ea;
ea = &(pCurr[x + 1]);
sw = so;
so = se;
se = &(pBelow[x + 1]);
int A = (*no == 0 && *ne == 1) + (*ne == 0 && *ea == 1) +
(*ea == 0 && *se == 1) + (*se == 0 && *so == 1) +
(*so == 0 && *sw == 1) + (*sw == 0 && *we == 1) +
(*we == 0 && *nw == 1) + (*nw == 0 && *no == 1);
int B = *no + *ne + *ea + *se + *so + *sw + *we + *nw;
int m1 = iter == 0 ? (*no * *ea * *so) : (*no * *ea * *we);
int m2 = iter == 0 ? (*ea * *so * *we) : (*no * *so * *we);
if (A == 1 && (B >= 2 && B <= 6) && m1 == 0 && m2 == 0)
pDst[x] = 1;
}
}
img &= ~marker;
}
void thinning(const cv::Mat& src, cv::Mat& dst)
{
dst = src.clone();
dst /= 255; // convert to binary image
cv::Mat prev = cv::Mat::zeros(dst.size(), CV_8UC1);
cv::Mat diff;
do {
thinningIteration(dst, 0);
thinningIteration(dst, 1);
cv::absdiff(dst, prev, diff);
dst.copyTo(prev);
} while (cv::countNonZero(diff) > 0);
dst *= 255;
}
int main()
{
RNG rng(123);
// Read image
Mat3b src = imread("path_to_image");
// Convert to grayscale
Mat1b gray;
cvtColor(src, gray, COLOR_BGR2GRAY);
// Binarize
Mat1b bin;
threshold(gray, bin, 127, 255, THRESH_BINARY_INV);
// Perform thinning
thinning(bin, bin);
// Create result image
Mat3b res = src.clone();
// Find contours
vector<vector<Point>> contours;
findContours(bin.clone(), contours, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
// For each contour
for (vector<Point>& contour : contours)
{
// Compute convex hull
vector<Point> hull;
convexHull(contour, hull);
// Compute circularity, used for shape classification
double area = contourArea(hull);
double perimeter = arcLength(hull, true);
double circularity = (4 * CV_PI * area) / (perimeter * perimeter);
// Shape classification
if (circularity > 0.9)
{
// CIRCLE
//{
// // Fit an ellipse ...
// RotatedRect rect = fitEllipse(contour);
// Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
// ellipse(res, rect, color, 5);
//}
{
// ... or find min enclosing circle
Point2f center;
float radius;
minEnclosingCircle(contour, center, radius);
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
circle(res, center, radius, color, 5);
}
}
else if (circularity > 0.75)
{
// RECTANGLE
//{
// // Minimum oriented bounding box ...
// RotatedRect rect = minAreaRect(contour);
// Point2f pts[4];
// rect.points(pts);
// Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
// for (int i = 0; i < 4; ++i)
// {
// line(res, pts[i], pts[(i + 1) % 4], color, 5);
// }
//}
{
// ... or bounding box
Rect box = boundingRect(contour);
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
rectangle(res, box, color, 5);
}
}
else if (circularity > 0.7)
{
// TRIANGLE
// Select the portion of the image containing only the wanted contour
Rect roi = boundingRect(contour);
Mat1b maskRoi(bin.rows, bin.cols, uchar(0));
rectangle(maskRoi, roi, Scalar(255), CV_FILLED);
Mat1b triangle(roi.height, roi.height, uchar(0));
bin.copyTo(triangle, maskRoi);
// Find min encolsing circle on the contour
Point2f center;
float radius;
minEnclosingCircle(contour, center, radius);
// decrease the size of the enclosing circle until it intersects the contour
// in at least 3 different points (i.e. the 3 vertices)
vector<vector<Point>> vertices;
do
{
vertices.clear();
radius--;
Mat1b maskCirc(bin.rows, bin.cols, uchar(0));
circle(maskCirc, center, radius, Scalar(255), 5);
maskCirc &= triangle;
findContours(maskCirc.clone(), vertices, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
} while (vertices.size() < 3);
// Just get the first point in each vertex blob.
// You could get the centroid for a little better accuracy
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
line(res, vertices[0][0], vertices[1][0], color, 5);
line(res, vertices[1][0], vertices[2][0], color, 5);
line(res, vertices[2][0], vertices[0][0], color, 5);
}
else
{
cout << "Some other shape..." << endl;
}
}
return 0;
}
The results (minEnclosingCircle
and boundingRect
):
The results (fitEllipse
and minAreaRect
):
You might check out a couple of resources.
First, you might consider asking questions at answers.opencv.org. There is probably a higher concentration of opencv specialists there.
Second, the book Practical OpenCV by Samarth Brahmbhatt is available as a free pdf and is easily found on google. It is contains many examples related to what you are looking for.
For example, you can separate different (non-overlapping) contours, as is shown in example 6.1 on page 68. He has a simple program for finding circles and lines in example 6.4 on page 78. You can also find a RANSAC-based ellipse-finder (much more complicated, but would be very useful here) in example 6.5 on page 82.
The book is in C++, but I imagine it will be very relevant, only you will need an API reference to translate it to python.
Personally, for your proejct, I would analyze one contour at a time, starting with his ellipse finder, and where a suitable ellipse can not be found, you could use a Hough transform of adjustable threshold, and truncate the resulting lines at their intersections, and bam! You have polygons.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With