Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Decoding Permutated English Strings

A coworker was recently asked this when trying to land a (different) research job:

Given 10 128-character strings which have been permutated in exactly the same way, decode the strings. The original strings are English text with spaces, numbers, punctuation and other non-alpha characters removed.

He was given a few days to think about it before an answer was expected. How would you do this? You can use any computer resource, including character/word level language models.

like image 748
Nate Glenn Avatar asked Sep 04 '11 22:09

Nate Glenn


2 Answers

This is a basic transposition cipher. My question above was simply to determine if it was a transposition cipher or a substitution cipher. Cryptanalysis of such systems is fairly straightforward. Others have already alluded to basic methods. Optimal approaches will attempt to place the hardest and rarest letters first, as these will tend to uniquely identify the letters around them, which greatly reduces the subsequent search space. Simply finding a place to place an "a" (no pun intended) is not hard, but finding a location for a "q", "z", or "x" is a bit more work.

The overarching goal for an algorithm's quality isn't to decipher the text, as it can be done by better than brute force methods, nor is it simply to be fast, but it should eliminate possibilities absolutely as fast as possible.

Since you can use multiple strings simultaneously, attempting to create words from the rarest characters is going to allow you to test dictionary attacks in parallel. Finding the correct placement of the rarest terms in each string as quickly as possible will decipher that ciphertext PLUS all of the others at the same time.

If you search for cryptanalysis of transposition ciphers, you'll find a bunch with genetic algorithms. These are meant to advance the research cred of people working in GA, as these are not really optimal in practice. Instead, you should look at some basic optimizatin methods, such as branch and bound, A*, and a variety of statistical methods. (How deep you should go depends on your level of expertise in algorithms and statistics. :) I would switch between deterministic methods and statistical optimization methods several times.)

In any case, the calculations should be dirt cheap and fast, because the scale of initial guesses could be quite large. It's best to have a cheap way to filter out a LOT of possible placements first, then spend more CPU time on sifting through the better candidates. To that end, it's good to have a way of describing the stages of processing and the computational effort for each stage. (At least that's what I would expect if I gave this as an interview question.)

You can even buy a fairly credible reference book on deciphering double transposition ciphers.


Update 1: Take a look at these slides for more ideas on iterative improvements. It's not a great reference set of slides, but it's readily accessible. What's more, although the slides are about GA and simulated annealing (methods that come up a lot in search results for transposition cipher cryptanalysis), the author advocates against such methods when you can use A* or other methods. :)

like image 157
Iterator Avatar answered Sep 30 '22 17:09

Iterator


first, you'd need a test for the correct ordering. something fairly simple like being able to break the majority of texts into words using a dictionary ordered by frequency of use without backtracking.

one you have that, you can play with various approaches. two i would try are:

  • using a genetic algorithm, with scoring based on 2 and 3-letter tuples (which you can either get from somewhere or generate yourself). the hard part of genetic algorithms is finding a good description of the process that can be fragmented and recomposed. i would guess that something like "move fragment x to after fragment y" would be a good approach, where the indices are positions in the original text (and so change as the "dna" is read). also, you might need to extend the scoring with something that gets you closer to "real" text near the end - something like the length over which the verification algorithm runs, or complete words found.

  • using a graph approach. you would need to find a consistent path through the graph of letter positions, perhaps with a beam-width search, using the weights obtained from the pair frequencies. i'm not sure how you'd handle reaching the end of the string and restarting, though. perhaps 10 sentences is sufficient to identify with strong probability good starting candidates (from letter frequency) - wouldn't surprise me.

this is a nice problem :o) i suspect 10 sentences is a strong constraint (for every step you have a good chance of common letter pairs in several strings - you probably want to combine probabilities by discarding the most unlikely, unless you include word start/end pairs) so i think the graph approach would be most efficient.

like image 28
andrew cooke Avatar answered Sep 30 '22 17:09

andrew cooke