I am having some trouble using the ddply function from the plyr package. I am trying to summarise the following data with counts and proportions within each group. Here's my data:
structure(list(X5employf = structure(c(1L, 3L, 1L, 1L, 1L, 3L,
1L, 1L, 1L, 3L, 1L, 1L, 1L, 2L, 2L, 3L, 3L, 3L, 1L, 2L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 1L, 1L, 3L, 1L,
3L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L,
3L, 3L, 1L), .Label = c("increase", "decrease", "same"), class = "factor"),
X5employff = structure(c(2L, 6L, NA, 2L, 4L, 6L, 5L, 2L,
2L, 8L, 2L, 2L, 2L, 7L, 7L, 8L, 11L, 7L, 2L, 8L, 8L, 11L,
7L, 6L, 2L, 5L, 2L, 8L, 7L, 7L, 7L, 8L, 6L, 7L, 5L, 5L, 7L,
2L, 6L, 7L, 2L, 2L, 2L, 2L, 2L, 5L, 5L, 5L, 2L, 5L, 2L, 2L,
2L, 5L, 12L, 2L, 2L, 2L, 2L, 5L, 5L, 5L, 5L, 2L, 5L, 2L,
13L, 9L, 9L, 9L, 7L, 8L, 5L), .Label = c("", "1", "1 and 8",
"2", "3", "4", "5", "6", "6 and 7", "6 and 7 ", "7", "8",
"1 and 8"), class = "factor")), .Names = c("X5employf", "X5employff"
), row.names = c(NA, 73L), class = "data.frame")
And here's my call using ddply:
ddply(kano_final, .(X5employf, X5employff), summarise, n=length(X5employff), prop=(n/sum(n))*100)
This gives me the counts of each instance of X5employff
correctly, but but seems as though the proportion is being calculated across each row and not within each level of the factor X5employf
as follows:
X5employf X5employff n prop
1 increase 1 26 100
2 increase 2 1 100
3 increase 3 15 100
4 increase 1 and 8 1 100
5 increase <NA> 1 100
6 decrease 4 1 100
7 decrease 5 5 100
8 decrease 6 2 100
9 decrease 7 1 100
10 decrease 8 1 100
11 same 4 4 100
12 same 5 6 100
13 same 6 5 100
14 same 6 and 7 3 100
15 same 7 1 100
When manually calculating the proportions within each group I get this:
X5employf X5employff n prop
1 increase 1 26 59.09
2 increase 2 1 2.27
3 increase 3 15 34.09
4 increase 1 and 8 1 2.27
5 increase <NA> 1 2.27
6 decrease 4 1 10.00
7 decrease 5 5 50.00
8 decrease 6 2 20.00
9 decrease 7 1 10.00
10 decrease 8 1 10.00
11 same 4 4 21.05
12 same 5 6 31.57
13 same 6 5 26.31
14 same 6 and 7 3 15.78
15 same 7 1 5.26
As you can see the sum of proportions in each level of factor X5employf equals 100.
I know this is probably ridiculously simple, but I can't seem to get my head around it despite reading all sorts of similar posts. Can anyone help with this and my understanding of how the summarise function works?!
Many, many thanks
Marty
You cannot do it in one ddply
call because what gets passed to each summarize
call is a subset of your data for a specific combination of your group variables. At this lowest level, you do not have access to that intermediate level sum(n)
. Instead, do it in two steps:
kano_final <- ddply(kano_final, .(X5employf), transform,
sum.n = length(X5employf))
ddply(kano_final, .(X5employf, X5employff), summarise,
n = length(X5employff), prop = n / sum.n[1] * 100)
Edit: using a single ddply
call and using table
as you hinted towards:
ddply(kano_final, .(X5employf), summarise,
n = Filter(function(x) x > 0, table(X5employff, useNA = "ifany")),
prop = 100* prop.table(n),
X5employff = names(n))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With