The same task in Pandas can be easily done with
import pandas as pd
df = pd.DataFrame({"lists":[[i, i+1] for i in range(10)]})
df[['left','right']] = pd.DataFrame([x for x in df.lists])
But I can't figure out how to do something similar with a dask.dataframe
Update
So far I found this workaround
ddf = dd.from_pandas(df, npartitions=2)
ddf["left"] = ddf.apply(lambda x: x["lists"][0], axis=1, meta=pd.Series())
ddf["right"] = ddf.apply(lambda x: x["lists"][1], axis=1, meta=pd.Series())
I'm wondering if there is another way to procede.
You could achieve this using assign
:
ddf = ddf.assign(left=ddf.lists.map(lambda x: x[0]),
right=ddf.lists.map(lambda x: x[1]))
e.g.,
ddf.compute()
lists left right
0 [0, 1] 0 1
1 [1, 2] 1 2
2 [2, 3] 2 3
3 [3, 4] 3 4
4 [4, 5] 4 5
5 [5, 6] 5 6
6 [6, 7] 6 7
7 [7, 8] 7 8
8 [8, 9] 8 9
9 [9, 10] 9 10
An alternative way of phrasing this (see comments, below) might be
ddf = ddf.assign(**{k: ddf.lists.map(lambda x, i=i: x[i])
for i, k in enumerate(['left', 'right'])})
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With