Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Pandas: grouping and aggregation with multiple functions

Situation

I have a pandas dataframe defined as follows:

import pandas as pd

headers = ['Group', 'Element', 'Case', 'Score', 'Evaluation']
data = [
    ['A', 1, 'x', 1.40, 0.59],
    ['A', 1, 'y', 9.19, 0.52],
    ['A', 2, 'x', 8.82, 0.80],
    ['A', 2, 'y', 7.18, 0.41],
    ['B', 1, 'x', 1.38, 0.22],
    ['B', 1, 'y', 7.14, 0.10],
    ['B', 2, 'x', 9.12, 0.28],
    ['B', 2, 'y', 4.11, 0.97],
]
df = pd.DataFrame(data, columns=headers)

which looks like this in console output:

  Group  Element Case  Score  Evaluation
0     A        1    x   1.40        0.59
1     A        1    y   9.19        0.52
2     A        2    x   8.82        0.80
3     A        2    y   7.18        0.41
4     B        1    x   1.38        0.22
5     B        1    y   7.14        0.10
6     B        2    x   9.12        0.28
7     B        2    y   4.11        0.97

Problem

I'd like to perform a grouping-and-aggregation operation on df that will give me the following result dataframe:

  Group  Max_score_value  Max_score_element  Max_score_case  Min_evaluation
0     A             9.19                  1               y            0.41 
1     B             9.12                  2               x            0.10

To clarify in more detail: I'd like to group by the Group column, and then apply aggregation to get the following result columns:

  • Max_score_value: the group-maximum value from the Score column.
  • Max_score_element: the value from the Element column that corresponds to the group-maximum Score value.
  • Max_score_case: the value from the Case column that corresponds to the group-maximum Score value.
  • Min_evaluation: the group-minimum value from the Evaluation column.

Tried thus far

I've come up with the following code for the grouping-and-aggregation:

result = (
    df.set_index(['Element', 'Case'])
    .groupby('Group')
    .agg({'Score': ['max', 'idxmax'], 'Evaluation': 'min'})
    .reset_index()
)
print(result)

which gives as output:

  Group Score         Evaluation
          max  idxmax        min
0     A  9.19  (1, y)       0.41
1     B  9.12  (2, x)       0.10

As you can see the basic data is there, but it's not quite in the format yet that I need. It's this last step that I'm struggling with. Does anyone here have some good ideas for generating a result dataframe in the format that I'm looking for?

like image 633
Xukrao Avatar asked Jan 04 '23 17:01

Xukrao


2 Answers

Starting from the result data frame, you can transform in two steps as follows to the format you need:

# collapse multi index column to single level column
result.columns = [y + '_' + x if y != '' else x for x, y in result.columns]
​
# split the idxmax column into two columns
result = result.assign(
    max_score_element = result.idxmax_Score.str[0],
    max_score_case = result.idxmax_Score.str[1]
).drop('idxmax_Score', 1)

result

#Group  max_Score   min_Evaluation  max_score_case  max_score_element
#0   A       9.19             0.41               y                  1
#1   B       9.12             0.10               x                  2

An alternative starting from original df using join, which may not be as efficient but less verbose similar to @tarashypka's idea:

(df.groupby('Group')
   .agg({'Score': 'idxmax', 'Evaluation': 'min'})
   .set_index('Score')
   .join(df.drop('Evaluation',1))
   .reset_index(drop=True))

#Evaluation  Group  Element   Case  Score
#0     0.41      A        1      y   9.19
#1     0.10      B        2      x   9.12

Naive timing with the example data set:

%%timeit 
(df.groupby('Group')
 .agg({'Score': 'idxmax', 'Evaluation': 'min'})
 .set_index('Score')
 .join(df.drop('Evaluation',1))
 .reset_index(drop=True))
# 100 loops, best of 3: 3.47 ms per loop

%%timeit
result = (
    df.set_index(['Element', 'Case'])
    .groupby('Group')
    .agg({'Score': ['max', 'idxmax'], 'Evaluation': 'min'})
    .reset_index()
)
​
result.columns = [y + '_' + x if y != '' else x for x, y in result.columns]
​
result = result.assign(
    max_score_element = result.idxmax_Score.str[0],
    max_score_case = result.idxmax_Score.str[1]
).drop('idxmax_Score', 1)
# 100 loops, best of 3: 7.61 ms per loop
like image 175
Psidom Avatar answered Jan 06 '23 06:01

Psidom


Here is possible solution with pd.merge

>> r = df.groupby('Group') \
>>       .agg({'Score': 'idxmax', 'Evaluation': 'min'}) \
>>       .rename(columns={'Score': 'idx'})
>> for c in ['Score', 'Element', 'Case']:
>>   r = pd.merge(r, df[[c]], how='left', left_on='idx', right_index=True)
>> r.drop('Score_idx', axis=1).rename(columns={'Score': 'Max_score_value', 
>>                                             'Element': 'Max_score_element', 
>>                                             'Case': 'Max_score_case'})
       Evaluation  Max_score_value  Max_score_element Max_score_case
Group                                                               
A            0.41             9.19                  1              y
B            0.10             9.12                  2              x

Though it provides the desired output, I am not sure about if it's not less efficient than yours approach.

like image 24
tarashypka Avatar answered Jan 06 '23 06:01

tarashypka