I have a dictionary of dictionaries of the form:
{'user':{movie:rating} }
For example,
{Jill': {'Avenger: Age of Ultron': 7.0, 'Django Unchained': 6.5, 'Gone Girl': 9.0, 'Kill the Messenger': 8.0} 'Toby': {'Avenger: Age of Ultron': 8.5, 'Django Unchained': 9.0, 'Zoolander': 2.0}}
I want to convert this dict of dicts into a pandas dataframe with column 1 the user name and the other columns the movie ratings i.e.
user Gone_Girl Horrible_Bosses_2 Django_Unchained Zoolander etc. \
However, some users did not rate the movies and so these movies are not included in the values() for that user key(). It would be nice in these cases to just fill the entry with NaN.
As of now, I iterate over the keys, fill a list, and then use this list to create a dataframe:
data=[] for i,key in enumerate(movie_user_preferences.keys() ): try: data.append((key ,movie_user_preferences[key]['Gone Girl'] ,movie_user_preferences[key]['Horrible Bosses 2'] ,movie_user_preferences[key]['Django Unchained'] ,movie_user_preferences[key]['Zoolander'] ,movie_user_preferences[key]['Avenger: Age of Ultron'] ,movie_user_preferences[key]['Kill the Messenger'])) # if no entry, skip except: pass df=pd.DataFrame(data=data,columns=['user','Gone_Girl','Horrible_Bosses_2','Django_Unchained','Zoolander','Avenger_Age_of_Ultron','Kill_the_Messenger'])
But this only gives me a dataframe of users who rated all the movies in the set.
My goal is to append to the data list by iterating over the movie labels (rather than the brute force approach shown above) and, secondly, create a dataframe that includes all users and that places null values in the elements that do not have movie ratings.
We can create a dataframe using Pandas. DataFrame() method. Example: Create pandas Dataframe from the dictionary of dictionaries.
Use pd. DataFrame. from_dict() to transform a list of dictionaries to pandas DatFrame. This function is used to construct DataFrame from dict of array-like or dicts.
Method 1: Create DataFrame from Dictionary using default Constructor of pandas. Dataframe class. Method 2: Create DataFrame from Dictionary with user-defined indexes. Method 3: Create DataFrame from simple dictionary i.e dictionary with key and simple value like integer or string value.
We can directly pass the list of dictionaries to the Dataframe constructor. It will return a Dataframe i.e. As all the dictionaries in the list had similar keys, so the keys became the column names. Then for each key, values of that key in all the dictionaries became the column values.
You can pass the dict of dict to the DataFrame constructor:
In [11]: d = {'Jill': {'Django Unchained': 6.5, 'Gone Girl': 9.0, 'Kill the Messenger': 8.0, 'Avenger: Age of Ultron': 7.0}, 'Toby': {'Django Unchained': 9.0, 'Zoolander': 2.0, 'Avenger: Age of Ultron': 8.5}} In [12]: pd.DataFrame(d) Out[12]: Jill Toby Avenger: Age of Ultron 7.0 8.5 Django Unchained 6.5 9.0 Gone Girl 9.0 NaN Kill the Messenger 8.0 NaN Zoolander NaN 2.0
Or use the from_dict
method:
In [13]: pd.DataFrame.from_dict(d) Out[13]: Jill Toby Avenger: Age of Ultron 7.0 8.5 Django Unchained 6.5 9.0 Gone Girl 9.0 NaN Kill the Messenger 8.0 NaN Zoolander NaN 2.0 In [14]: pd.DataFrame.from_dict(d, orient='index') Out[14]: Django Unchained Gone Girl Kill the Messenger Avenger: Age of Ultron Zoolander Jill 6.5 9 8 7.0 NaN Toby 9.0 NaN NaN 8.5 2
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With