Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Create new column in dataframe with match values from other dataframe

Have two dataframes, one has few information (df1) and other has all data (df2). What I am trying to create in a new column in df1 that finds the Total2 values and populates the new column accordingly based on the Names. Note that the Names visible in df1 will always find a match in Names of df2. I am wondering if there is some function in Pandas that already does this? My end goal is to create a bar chart.

alldatapath = "all_data.csv"
filteredpath = "filtered.csv"

import pandas as pd

df1 = pd.read_csv(
    filteredpath,     # file name
    sep=',',                    # column separator
    quotechar='"',              # quoting character
    na_values="NA",                # fill missing values with 0
    usecols=[0,1],     # columns to use
    decimal='.')                # symbol for decimals

df2 = pd.read_csv(
    alldatapath,     # file name
    sep=',',                    # column separator
    quotechar='"',              # quoting character
    na_values="NA",                # fill missing values with 0
    usecols=[0,1],     # columns to use
    decimal='.')                # symbol for decimals

df1 = df1.head(5) #trim to top 5

print(df1)
print(df2)

output (df1):

         Name  Total
0  Accounting      3
1   Reporting      1
2     Finance      1
3       Audit      1
4    Template      2

output (df2):

          Name   Total2
0    Reporting    100
1   Accounting    120
2      Finance    400
3        Audit    500
4  Information     50
5     Template   1200
6      KnowHow   2000

Final Output (df1) should be something like:

         Name  Total  Total2(new column)
0  Accounting      3    120
1   Reporting      1    100
2     Finance      1    400
3       Audit      1    500
4    Template      2   1200
like image 686
Gonzalo Avatar asked Oct 17 '17 11:10

Gonzalo


1 Answers

Need map by Series first for new column:

df1['Total2'] = df1['Name'].map(df2.set_index('Name')['Total2'])
print (df1)
         Name  Total  Total2
0  Accounting      3     120
1   Reporting      1     100
2     Finance      1     400
3       Audit      1     500
4    Template      2    1200

And then set_index with DataFrame.plot.bar:

df1.set_index('Name').plot.bar()
like image 129
jezrael Avatar answered Oct 30 '22 06:10

jezrael