I need to develop a Course Timetabling software which can allot timeslots and rooms efficiently. This is a curriculum based routine, not post-enrollment based. And efficiently means classes are assigned timeslots according to staff time preferences and also need to minimize 1st year-2nd year class overlap so that 2nd year students can retake the courses they've failed to pass.(and also for 3rd-4th yr pair).
Now, at first i thought that would be an easy problem, but now it seems different. Most of the papers i've looked on uses Genetic Algorithm/PSO/Simulated Annealing or these type of algorithm. And i'm still unable to interpret the problem to a GA problem. what i'm confused about is why almost none of them suggests DFS or Graph-coloring algorithm?
Can someone explain the scenario if DFS/graph-coloring is used? Or why they aren't suggested or tried.
My experience with solving this problem for a complex department, is that the hard constraints (like no overlapping of courses that are taken by the same population, and hard constraints of the teachers) are rather easily solvable by exact methods. I modeled the problem with 0-1 integer linear programming, and solved it with a SAT-based tool called minisat+. Competitive commercial tools like cplex can also solve it. So with today's tools there is no need to approximate as suggested above, even when the input is rather large. Now, optimizing the solution is a different story. There can be many (weighted) objectives, and finding the solution that brings the objective to minimum is indeed very hard computationally (no tool that I tried can solve it within 24 hours), but they reach near optimum in a few hours (I know it is near optimum because I can compute the theoretical bound on the solution).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With