Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Copying array of pointers into device memory and back (CUDA)

I am trying to use cublas function cublasSgemmBatched in my toy example. In this example I first allocate 2D arrays: h_AA, h_BB of the size [6][5] and h_CC of the size [6][1]. After that I copied it to the device, performed cublasSgemmBatched and tried to copy array d_CC back to the host array h_CC. However, I got a error (cudaErrorLaunchFailure) with device to host copying and I am not sure that I copied arrays into the device correctly:

int main(){
    cublasHandle_t handle;
    cudaError_t cudaerr;
    cudaEvent_t start, stop;
    cublasStatus_t stat;
    const float alpha = 1.0f;
    const float beta = 0.0f;
    float **h_AA, **h_BB, **h_CC;
    h_AA = new float*[6];
    h_BB = new float*[6];
    h_CC = new float*[6];
    for (int i = 0; i < 6; i++){
        h_AA[i] = new float[5];
        h_BB[i] = new float[5];
        h_CC[i] = new float[1];
        for (int j = 0; j < 5; j++){
            h_AA[i][j] = j;
            h_BB[i][j] = j;
        }
        h_CC[i][0] = 1;
    }
    float **d_AA, **d_BB, **d_CC;
    cudaMalloc(&d_AA, 6 * sizeof(float*));
    cudaMalloc(&d_BB, 6 * sizeof(float*));
    cudaMalloc(&d_CC, 6 * sizeof(float*));
    cudaerr = cudaMemcpy(d_AA, h_AA, 6 * sizeof(float*), cudaMemcpyHostToDevice);
    cudaerr = cudaMemcpy(d_BB, h_BB, 6 * sizeof(float*), cudaMemcpyHostToDevice);
    cudaerr = cudaMemcpy(d_CC, h_CC, 6 * sizeof(float*), cudaMemcpyHostToDevice);
    stat = cublasCreate(&handle);
    stat = cublasSgemmBatched(handle, CUBLAS_OP_N, CUBLAS_OP_N, 1, 1, 5, &alpha,
             (const float**)d_AA, 1, (const float**)d_BB, 5, &beta, d_CC, 1, 6);
    cudaerr = cudaMemcpy(h_CC, d_CC, 6 * sizeof(float*), cudaMemcpyDeviceToHost);
    cublasDestroy(handle);
}

So this code works, however the last cudaerr returns cudaErrorLaunchFailure. I was trying to follow this sample code on Github.

Thanks

P.S. What I don't understand, what is the sizeof(float*) and how cudaMalloc knows how many memory required for each array (like here I determine the size of 1 dimension only).

UPDATE: I did it!!:

cublasHandle_t handle;
cudaError_t cudaerr;
cudaEvent_t start, stop;
cublasStatus_t stat;
const float alpha = 1.0f;
const float beta = 0.0f;

float *h_A = new float[5];
float *h_B = new float[5];
float *h_C = new float[6];
for (int i = 0; i < 5; i++)
{
    h_A[i] = i;
    h_B[i] = i;
}



float **h_AA, **h_BB, **h_CC;
h_AA = (float**)malloc(6* sizeof(float*));
h_BB = (float**)malloc(6 * sizeof(float*));
h_CC = (float**)malloc(6 * sizeof(float*));
for (int i = 0; i < 6; i++){
    cudaMalloc((void **)&h_AA[i], 5 * sizeof(float));
    cudaMalloc((void **)&h_BB[i], 5 * sizeof(float));
    cudaMalloc((void **)&h_CC[i], sizeof(float));
    cudaMemcpy(h_AA[i], h_A, 5 * sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(h_BB[i], h_B, 5 * sizeof(float), cudaMemcpyHostToDevice);
}
float **d_AA, **d_BB, **d_CC;
cudaMalloc(&d_AA, 6 * sizeof(float*));
cudaMalloc(&d_BB, 6 * sizeof(float*));
cudaMalloc(&d_CC, 6 * sizeof(float*));
cudaerr = cudaMemcpy(d_AA, h_AA, 6 * sizeof(float*), cudaMemcpyHostToDevice);
cudaerr = cudaMemcpy(d_BB, h_BB, 6 * sizeof(float*), cudaMemcpyHostToDevice);
cudaerr = cudaMemcpy(d_CC, h_CC, 6 * sizeof(float*), cudaMemcpyHostToDevice);
stat = cublasCreate(&handle);
    stat = cublasSgemmBatched(handle, CUBLAS_OP_N, CUBLAS_OP_N, 1, 1, 5, &alpha, 
             (const float**)d_AA, 1, (const float**)d_BB, 5, &beta, d_CC, 1, 6);
    cudaerr = cudaMemcpy(h_CC, d_CC, sizeof(float), cudaMemcpyDeviceToHost);
    for (int i = 0; i < 6;i++)
        cudaMemcpy(h_C+i, h_CC[i], sizeof(float), cudaMemcpyDeviceToHost);
cublasDestroy(handle);
like image 222
Mikhail Genkin Avatar asked Jan 13 '15 21:01

Mikhail Genkin


1 Answers

So, I figured out the answer (thanks to @Robert Crovella): in order to create device array of pointers to device arrays (for batched functions), one should first create host array of pointers to device arrays, and after that copy it into device array of pointers to device arrays. The same is true about transfering back to host: one should use intermediate host array of pointers to device arrays.

cublasHandle_t handle;
cudaError_t cudaerr;
cudaEvent_t start, stop;
cublasStatus_t stat;
const float alpha = 1.0f;
const float beta = 0.0f;

float *h_A = new float[5];
float *h_B = new float[5];
float *h_C = new float[6];
for (int i = 0; i < 5; i++)
{
    h_A[i] = i;
    h_B[i] = i;
}



float **h_AA, **h_BB, **h_CC;
h_AA = (float**)malloc(6* sizeof(float*));
h_BB = (float**)malloc(6 * sizeof(float*));
h_CC = (float**)malloc(6 * sizeof(float*));
for (int i = 0; i < 6; i++){
    cudaMalloc((void **)&h_AA[i], 5 * sizeof(float));
    cudaMalloc((void **)&h_BB[i], 5 * sizeof(float));
    cudaMalloc((void **)&h_CC[i], sizeof(float));
    cudaMemcpy(h_AA[i], h_A, 5 * sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(h_BB[i], h_B, 5 * sizeof(float), cudaMemcpyHostToDevice);
}
float **d_AA, **d_BB, **d_CC;
cudaMalloc(&d_AA, 6 * sizeof(float*));
cudaMalloc(&d_BB, 6 * sizeof(float*));
cudaMalloc(&d_CC, 6 * sizeof(float*));
cudaerr = cudaMemcpy(d_AA, h_AA, 6 * sizeof(float*), cudaMemcpyHostToDevice);
cudaerr = cudaMemcpy(d_BB, h_BB, 6 * sizeof(float*), cudaMemcpyHostToDevice);
cudaerr = cudaMemcpy(d_CC, h_CC, 6 * sizeof(float*), cudaMemcpyHostToDevice);
stat = cublasCreate(&handle);
    stat = cublasSgemmBatched(handle, CUBLAS_OP_N, CUBLAS_OP_N, 1, 1, 5, &alpha, 
             (const float**)d_AA, 1, (const float**)d_BB, 5, &beta, d_CC, 1, 6);
    cudaerr = cudaMemcpy(h_CC, d_CC, sizeof(float), cudaMemcpyDeviceToHost);
    for (int i = 0; i < 6;i++)
        cudaMemcpy(h_C+i, h_CC[i], sizeof(float), cudaMemcpyDeviceToHost);
cublasDestroy(handle);
like image 132
Mikhail Genkin Avatar answered Oct 03 '22 04:10

Mikhail Genkin