I am trying to use cublas
function cublasSgemmBatched
in my toy example. In this example I first allocate 2D arrays: h_AA, h_BB
of the size [6
][5
] and h_CC
of the size [6
][1
]. After that I copied it to the device, performed cublasSgemmBatched
and tried to copy array d_CC
back to the host array h_CC
. However, I got a error (cudaErrorLaunchFailure
) with device to host copying and I am not sure that I copied arrays into the device correctly:
int main(){
cublasHandle_t handle;
cudaError_t cudaerr;
cudaEvent_t start, stop;
cublasStatus_t stat;
const float alpha = 1.0f;
const float beta = 0.0f;
float **h_AA, **h_BB, **h_CC;
h_AA = new float*[6];
h_BB = new float*[6];
h_CC = new float*[6];
for (int i = 0; i < 6; i++){
h_AA[i] = new float[5];
h_BB[i] = new float[5];
h_CC[i] = new float[1];
for (int j = 0; j < 5; j++){
h_AA[i][j] = j;
h_BB[i][j] = j;
}
h_CC[i][0] = 1;
}
float **d_AA, **d_BB, **d_CC;
cudaMalloc(&d_AA, 6 * sizeof(float*));
cudaMalloc(&d_BB, 6 * sizeof(float*));
cudaMalloc(&d_CC, 6 * sizeof(float*));
cudaerr = cudaMemcpy(d_AA, h_AA, 6 * sizeof(float*), cudaMemcpyHostToDevice);
cudaerr = cudaMemcpy(d_BB, h_BB, 6 * sizeof(float*), cudaMemcpyHostToDevice);
cudaerr = cudaMemcpy(d_CC, h_CC, 6 * sizeof(float*), cudaMemcpyHostToDevice);
stat = cublasCreate(&handle);
stat = cublasSgemmBatched(handle, CUBLAS_OP_N, CUBLAS_OP_N, 1, 1, 5, &alpha,
(const float**)d_AA, 1, (const float**)d_BB, 5, &beta, d_CC, 1, 6);
cudaerr = cudaMemcpy(h_CC, d_CC, 6 * sizeof(float*), cudaMemcpyDeviceToHost);
cublasDestroy(handle);
}
So this code works, however the last cudaerr
returns cudaErrorLaunchFailure
. I was trying to follow this sample code on Github.
Thanks
P.S. What I don't understand, what is the sizeof(float*)
and how cudaMalloc
knows how many memory required for each array (like here I determine the size of 1 dimension only).
UPDATE: I did it!!:
cublasHandle_t handle;
cudaError_t cudaerr;
cudaEvent_t start, stop;
cublasStatus_t stat;
const float alpha = 1.0f;
const float beta = 0.0f;
float *h_A = new float[5];
float *h_B = new float[5];
float *h_C = new float[6];
for (int i = 0; i < 5; i++)
{
h_A[i] = i;
h_B[i] = i;
}
float **h_AA, **h_BB, **h_CC;
h_AA = (float**)malloc(6* sizeof(float*));
h_BB = (float**)malloc(6 * sizeof(float*));
h_CC = (float**)malloc(6 * sizeof(float*));
for (int i = 0; i < 6; i++){
cudaMalloc((void **)&h_AA[i], 5 * sizeof(float));
cudaMalloc((void **)&h_BB[i], 5 * sizeof(float));
cudaMalloc((void **)&h_CC[i], sizeof(float));
cudaMemcpy(h_AA[i], h_A, 5 * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(h_BB[i], h_B, 5 * sizeof(float), cudaMemcpyHostToDevice);
}
float **d_AA, **d_BB, **d_CC;
cudaMalloc(&d_AA, 6 * sizeof(float*));
cudaMalloc(&d_BB, 6 * sizeof(float*));
cudaMalloc(&d_CC, 6 * sizeof(float*));
cudaerr = cudaMemcpy(d_AA, h_AA, 6 * sizeof(float*), cudaMemcpyHostToDevice);
cudaerr = cudaMemcpy(d_BB, h_BB, 6 * sizeof(float*), cudaMemcpyHostToDevice);
cudaerr = cudaMemcpy(d_CC, h_CC, 6 * sizeof(float*), cudaMemcpyHostToDevice);
stat = cublasCreate(&handle);
stat = cublasSgemmBatched(handle, CUBLAS_OP_N, CUBLAS_OP_N, 1, 1, 5, &alpha,
(const float**)d_AA, 1, (const float**)d_BB, 5, &beta, d_CC, 1, 6);
cudaerr = cudaMemcpy(h_CC, d_CC, sizeof(float), cudaMemcpyDeviceToHost);
for (int i = 0; i < 6;i++)
cudaMemcpy(h_C+i, h_CC[i], sizeof(float), cudaMemcpyDeviceToHost);
cublasDestroy(handle);
So, I figured out the answer (thanks to @Robert Crovella): in order to create device array of pointers to device arrays
(for batched functions), one should first create host array of pointers to device arrays
, and after that copy it into device array of pointers to device arrays
. The same is true about transfering back to host: one should use intermediate host array of pointers to device arrays
.
cublasHandle_t handle;
cudaError_t cudaerr;
cudaEvent_t start, stop;
cublasStatus_t stat;
const float alpha = 1.0f;
const float beta = 0.0f;
float *h_A = new float[5];
float *h_B = new float[5];
float *h_C = new float[6];
for (int i = 0; i < 5; i++)
{
h_A[i] = i;
h_B[i] = i;
}
float **h_AA, **h_BB, **h_CC;
h_AA = (float**)malloc(6* sizeof(float*));
h_BB = (float**)malloc(6 * sizeof(float*));
h_CC = (float**)malloc(6 * sizeof(float*));
for (int i = 0; i < 6; i++){
cudaMalloc((void **)&h_AA[i], 5 * sizeof(float));
cudaMalloc((void **)&h_BB[i], 5 * sizeof(float));
cudaMalloc((void **)&h_CC[i], sizeof(float));
cudaMemcpy(h_AA[i], h_A, 5 * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(h_BB[i], h_B, 5 * sizeof(float), cudaMemcpyHostToDevice);
}
float **d_AA, **d_BB, **d_CC;
cudaMalloc(&d_AA, 6 * sizeof(float*));
cudaMalloc(&d_BB, 6 * sizeof(float*));
cudaMalloc(&d_CC, 6 * sizeof(float*));
cudaerr = cudaMemcpy(d_AA, h_AA, 6 * sizeof(float*), cudaMemcpyHostToDevice);
cudaerr = cudaMemcpy(d_BB, h_BB, 6 * sizeof(float*), cudaMemcpyHostToDevice);
cudaerr = cudaMemcpy(d_CC, h_CC, 6 * sizeof(float*), cudaMemcpyHostToDevice);
stat = cublasCreate(&handle);
stat = cublasSgemmBatched(handle, CUBLAS_OP_N, CUBLAS_OP_N, 1, 1, 5, &alpha,
(const float**)d_AA, 1, (const float**)d_BB, 5, &beta, d_CC, 1, 6);
cudaerr = cudaMemcpy(h_CC, d_CC, sizeof(float), cudaMemcpyDeviceToHost);
for (int i = 0; i < 6;i++)
cudaMemcpy(h_C+i, h_CC[i], sizeof(float), cudaMemcpyDeviceToHost);
cublasDestroy(handle);
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With