Suppose I have an array:
[['a', 10, 1, 0.1],
 ['a', 10, 2, 0.2],
 ['a', 20, 2, 0.3],
 ['b', 10, 1, 0.4],
 ['b', 20, 2, 0.5]]
And I want a dict (or JSON):
{
    'a': {
        10: {1: 0.1, 2: 0.2},
        20: {2: 0.3}
    }
    'b': {
        10: {1: 0.4},
        20: {2: 0.5}
    }
}
Is there any good way or some library for this task?
In this example the array is just 4-column, but my original array is more complicated (7-column).
Currently I implement this naively:
import pandas as pd
df = pd.DataFrame(array)
grouped1 = df.groupby('column1')
for column1 in grouped1.groups:
    group1 = grouped1.get_group(column1)
    grouped2 = group1.groupby('column2')
    for column2 in grouped2.groups:
        group2 = grouped2.get_group(column2)
        ...
And defaultdict way:
d = defaultdict(lambda x: defaultdict(lambda y: defaultdict ... ))
for row in array:
    d[row[0]][row[1]][row[2]... = row[-1]
But I think neither is smart.
I would suggest this rather simple solution:
from functools import reduce
data = [['a', 10, 1, 0.1],
        ['a', 10, 2, 0.2],
        ['a', 20, 2, 0.3],
        ['b', 10, 1, 0.4],
        ['b', 20, 2, 0.5]]
result = dict()
for row in data:
    reduce(lambda v, k: v.setdefault(k, {}), row[:-2], result)[row[-2]] = row[-1]
print(result)
{'a': {10: {1: 0.1, 2: 0.2}, 20: {2: 0.3}}, 'b': {10: {1: 0.4}, 20: {2: 0.5}}}
An actual recursive solution would be something like this:
def add_to_group(keys: list, group: dict):
    if len(keys) == 2:
        group[keys[0]] = keys[1]
    else:
        add_to_group(keys[1:], group.setdefault(keys[0], dict()))
result = dict()
for row in data:
    add_to_group(row, result)
print(result)
                        Here is a recursive solution. The base case is when you have a list of 2-element lists (or tuples), in which case, the dict will do what we want:
>>> dict([(1, 0.1), (2, 0.2)])
{1: 0.1, 2: 0.2}
For other cases, we will remove the first column and recurse down until we get to the base case.
from itertools import groupby
def rows2dict(rows):
    if len(rows[0]) == 2:
        # e.g. [(1, 0.1), (2, 0.2)] ==> {1: 0.1, 2: 0.2}
        return dict(rows)
    else:
        dict_object = dict()
        for column1, groupped_rows in groupby(rows, lambda x: x[0]):
            rows_without_first_column = [x[1:] for x in groupped_rows]
            dict_object[column1] = rows2dict(rows_without_first_column)
        return dict_object
if __name__ == '__main__':
    rows = [['a', 10, 1, 0.1],
            ['a', 10, 2, 0.2],
            ['a', 20, 2, 0.3],
            ['b', 10, 1, 0.4],
            ['b', 20, 2, 0.5]]
    dict_object = rows2dict(rows)
    print dict_object
{'a': {10: {1: 0.1, 2: 0.2}, 20: {2: 0.3}}, 'b': {10: {1: 0.4}, 20: {2: 0.5}}}
itertools.groupby generator to simplify grouping of similar rows based on the first columnrows variable has 2 or more columns. The result is unpreditable for rows which has 0 or 1 column.If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With