Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Convert Pandas column containing NaNs to dtype `int`

Tags:

python

pandas

na

People also ask

How do I convert an entire column to an int panda?

Convert Column to int (Integer)Use pandas DataFrame. astype() function to convert column to int (integer), you can apply this on a specific column or on an entire DataFrame. To cast the data type to 64-bit signed integer, you can use numpy. int64 , numpy.

How do I convert a column to an int in Python?

to_numeric() The best way to convert one or more columns of a DataFrame to numeric values is to use pandas. to_numeric() . This function will try to change non-numeric objects (such as strings) into integers or floating-point numbers as appropriate.

Can NaN be an integer?

No, NaN is a floating point value. Every possible value of an int is a number.


The lack of NaN rep in integer columns is a pandas "gotcha".

The usual workaround is to simply use floats.


In version 0.24.+ pandas has gained the ability to hold integer dtypes with missing values.

Nullable Integer Data Type.

Pandas can represent integer data with possibly missing values using arrays.IntegerArray. This is an extension types implemented within pandas. It is not the default dtype for integers, and will not be inferred; you must explicitly pass the dtype into array() or Series:

arr = pd.array([1, 2, np.nan], dtype=pd.Int64Dtype())
pd.Series(arr)

0      1
1      2
2    NaN
dtype: Int64

For convert column to nullable integers use:

df['myCol'] = df['myCol'].astype('Int64')

My use case is munging data prior to loading into a DB table:

df[col] = df[col].fillna(-1)
df[col] = df[col].astype(int)
df[col] = df[col].astype(str)
df[col] = df[col].replace('-1', np.nan)

Remove NaNs, convert to int, convert to str and then reinsert NANs.

It's not pretty but it gets the job done!


It is now possible to create a pandas column containing NaNs as dtype int, since it is now officially added on pandas 0.24.0

pandas 0.24.x release notes Quote: "Pandas has gained the ability to hold integer dtypes with missing values


If you absolutely want to combine integers and NaNs in a column, you can use the 'object' data type:

df['col'] = (
    df['col'].fillna(0)
    .astype(int)
    .astype(object)
    .where(df['col'].notnull())
)

This will replace NaNs with an integer (doesn't matter which), convert to int, convert to object and finally reinsert NaNs.


I had the problem a few weeks ago with a few discrete features which were formatted as 'object'. This solution seemed to work.

for col in discrete:
    df[col] = pd.to_numeric(df[col],errors='coerce').astype(pd.Int64Dtype())