You can easily do this though,
df.apply(LabelEncoder().fit_transform)
EDIT2:
In scikit-learn 0.20, the recommended way is
OneHotEncoder().fit_transform(df)
as the OneHotEncoder now supports string input. Applying OneHotEncoder only to certain columns is possible with the ColumnTransformer.
EDIT:
Since this original answer is over a year ago, and generated many upvotes (including a bounty), I should probably extend this further.
For inverse_transform and transform, you have to do a little bit of hack.
from collections import defaultdict
d = defaultdict(LabelEncoder)
With this, you now retain all columns LabelEncoder
as dictionary.
# Encoding the variable
fit = df.apply(lambda x: d[x.name].fit_transform(x))
# Inverse the encoded
fit.apply(lambda x: d[x.name].inverse_transform(x))
# Using the dictionary to label future data
df.apply(lambda x: d[x.name].transform(x))
MOAR EDIT:
Using Neuraxle's FlattenForEach
step, it's possible to do this as well to use the same LabelEncoder
on all the flattened data at once:
FlattenForEach(LabelEncoder(), then_unflatten=True).fit_transform(df)
For using separate LabelEncoder
s depending for your columns of data, or if only some of your columns of data needs to be label-encoded and not others, then using a ColumnTransformer
is a solution that allows for more control on your column selection and your LabelEncoder instances.
As mentioned by larsmans, LabelEncoder() only takes a 1-d array as an argument. That said, it is quite easy to roll your own label encoder that operates on multiple columns of your choosing, and returns a transformed dataframe. My code here is based in part on Zac Stewart's excellent blog post found here.
Creating a custom encoder involves simply creating a class that responds to the fit()
, transform()
, and fit_transform()
methods. In your case, a good start might be something like this:
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline
# Create some toy data in a Pandas dataframe
fruit_data = pd.DataFrame({
'fruit': ['apple','orange','pear','orange'],
'color': ['red','orange','green','green'],
'weight': [5,6,3,4]
})
class MultiColumnLabelEncoder:
def __init__(self,columns = None):
self.columns = columns # array of column names to encode
def fit(self,X,y=None):
return self # not relevant here
def transform(self,X):
'''
Transforms columns of X specified in self.columns using
LabelEncoder(). If no columns specified, transforms all
columns in X.
'''
output = X.copy()
if self.columns is not None:
for col in self.columns:
output[col] = LabelEncoder().fit_transform(output[col])
else:
for colname,col in output.iteritems():
output[colname] = LabelEncoder().fit_transform(col)
return output
def fit_transform(self,X,y=None):
return self.fit(X,y).transform(X)
Suppose we want to encode our two categorical attributes (fruit
and color
), while leaving the numeric attribute weight
alone. We could do this as follows:
MultiColumnLabelEncoder(columns = ['fruit','color']).fit_transform(fruit_data)
Which transforms our fruit_data
dataset from
to
Passing it a dataframe consisting entirely of categorical variables and omitting the columns
parameter will result in every column being encoded (which I believe is what you were originally looking for):
MultiColumnLabelEncoder().fit_transform(fruit_data.drop('weight',axis=1))
This transforms
to
.
Note that it'll probably choke when it tries to encode attributes that are already numeric (add some code to handle this if you like).
Another nice feature about this is that we can use this custom transformer in a pipeline:
encoding_pipeline = Pipeline([
('encoding',MultiColumnLabelEncoder(columns=['fruit','color']))
# add more pipeline steps as needed
])
encoding_pipeline.fit_transform(fruit_data)
Since scikit-learn 0.20 you can use sklearn.compose.ColumnTransformer
and sklearn.preprocessing.OneHotEncoder
:
If you only have categorical variables, OneHotEncoder
directly:
from sklearn.preprocessing import OneHotEncoder
OneHotEncoder(handle_unknown='ignore').fit_transform(df)
If you have heterogeneously typed features:
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import OneHotEncoder
categorical_columns = ['pets', 'owner', 'location']
numerical_columns = ['age', 'weigth', 'height']
column_trans = make_column_transformer(
(categorical_columns, OneHotEncoder(handle_unknown='ignore'),
(numerical_columns, RobustScaler())
column_trans.fit_transform(df)
More options in the documentation: http://scikit-learn.org/stable/modules/compose.html#columntransformer-for-heterogeneous-data
We don't need a LabelEncoder.
You can convert the columns to categoricals and then get their codes. I used a dictionary comprehension below to apply this process to every column and wrap the result back into a dataframe of the same shape with identical indices and column names.
>>> pd.DataFrame({col: df[col].astype('category').cat.codes for col in df}, index=df.index)
location owner pets
0 1 1 0
1 0 2 1
2 0 0 0
3 1 1 2
4 1 3 1
5 0 2 1
To create a mapping dictionary, you can just enumerate the categories using a dictionary comprehension:
>>> {col: {n: cat for n, cat in enumerate(df[col].astype('category').cat.categories)}
for col in df}
{'location': {0: 'New_York', 1: 'San_Diego'},
'owner': {0: 'Brick', 1: 'Champ', 2: 'Ron', 3: 'Veronica'},
'pets': {0: 'cat', 1: 'dog', 2: 'monkey'}}
this does not directly answer your question (for which Naputipulu Jon and PriceHardman have fantastic replies)
However, for the purpose of a few classification tasks etc. you could use
pandas.get_dummies(input_df)
this can input dataframe with categorical data and return a dataframe with binary values. variable values are encoded into column names in the resulting dataframe. more
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With