I am using Pandas 0.18 and read_sas to load a sas7bdat dataset.
The dates in the Pandas dataframe appear as:
Out[56]: 
0    19411.0
1    19325.0
2    19325.0
3    19443.0
4    19778.0
Name: sas_date, dtype: float64
pd.to_datetime does not recognize this format. What should I do parse the date correctly?
Thanks!
According to this link,
[A] SAS date value is a value that represents the number of days between January 1, 1960, and a specified date
Therefore, if we convert the numbers to Pandas Timedeltas and add them to
1960-1-1 we can recover the date:
import numpy as np
import pandas as pd
ser = pd.Series([19411.0, 19325.0, 19325.0, 19443.0, 19778.0])
ser = pd.to_timedelta(ser, unit='D') + pd.Timestamp('1960-1-1')
yields
0   2013-02-22
1   2012-11-28
2   2012-11-28
3   2013-03-26
4   2014-02-24
dtype: datetime64[ns]
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With