I am trying to learn numpy array slicing.
But this is a syntax i cannot seem to understand.
What does
a[:1]
do.
I ran it in python.
a = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16])
a = a.reshape(2,2,2,2)
a[:1]
Output:
array([[[ 5, 6],
[ 7, 8]],
[[13, 14],
[15, 16]]])
Can someone explain to me the slicing and how it works. The documentation doesn't seem to answer this question.
Another question would be would there be a way to generate the a array using something like
np.array(1:16)
or something like in python where
x = [x for x in range(16)]
The commas in slicing are to separate the various dimensions you may have. In your first example you are reshaping the data to have 4 dimensions each of length 2. This may be a little difficult to visualize so if you start with a 2D structure it might make more sense:
>>> a = np.arange(16).reshape((4, 4))
>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
>>> a[0] # access the first "row" of data
array([0, 1, 2, 3])
>>> a[0, 2] # access the 3rd column (index 2) in the first row of the data
2
If you want to access multiple values using slicing you can use the colon to express a range:
>>> a[:, 1] # get the entire 2nd (index 1) column
array([[1, 5, 9, 13]])
>>> a[1:3, -1] # get the second and third elements from the last column
array([ 7, 11])
>>> a[1:3, 1:3] # get the data in the second and third rows and columns
array([[ 5, 6],
[ 9, 10]])
You can do steps too:
>>> a[::2, ::2] # get every other element (column-wise and row-wise)
array([[ 0, 2],
[ 8, 10]])
Hope that helps. Once that makes more sense you can look in to stuff like adding dimensions by using None
or np.newaxis
or using the ...
ellipsis:
>>> a[:, None].shape
(4, 1, 4)
You can find more here: http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
It might pay to explore the shape
and individual entries as we go along.
Let's start with
>>> a = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16])
>>> a.shape
(16, )
This is a one-dimensional array of length 16.
Now let's try
>>> a = a.reshape(2,2,2,2)
>>> a.shape
(2, 2, 2, 2)
It's a multi-dimensional array with 4 dimensions.
Let's see the 0, 1 element:
>>> a[0, 1]
array([[5, 6],
[7, 8]])
Since there are two dimensions left, it's a matrix of two dimensions.
Now a[:, 1]
says: take a[i, 1
for all possible values of i
:
>>> a[:, 1]
array([[[ 5, 6],
[ 7, 8]],
[[13, 14],
[15, 16]]])
It gives you an array where the first item is a[0, 1]
, and the second item is a[1, 1]
.
To answer the second part of your question (generating arrays of sequential values) you can use np.arange(start, stop, step)
or np.linspace(start, stop, num_elements)
. Both of these return a numpy array with the corresponding range of values.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With