I'm struggling to convert a JSON API response into a pandas Dataframe object. I've read answers to similar questions/documentation but nothing has helped. My closest attempt is below:
r = requests.get('https://api.xxx')
data = r.text
df = pd.read_json(data, orient='records')
Which returns the following format:
0 {'type': 'bid', 'price': 6.193e-05, ...},
1 {'type': 'bid', 'price': 6.194e-05, ...},
3 {'type': 'bid', 'price': 6.149e-05, ...} etc
The original format of the data is:
{'abc': [{'type': 'bid',
'price': 6.194e-05,
'amount': 2321.37952545,
'tid': 8577050,
'timestamp': 1498649162},
{'type': 'bid',
'price': 6.194e-05,
'amount': 498.78993587,
'tid': 8577047,
'timestamp': 1498649151},
...]}
I'm happy to be directed to good documentation.
You can convert JSON to Pandas DataFrame by simply using read_json() . Just pass JSON string to the function. It takes multiple parameters, for our case I am using orient that specifies the format of JSON string. This function is also used to read JSON files into pandas DataFrame.
Reading JSON Files using Pandas To read the files, we use read_json() function and through it, we pass the path to the JSON file we want to read. Once we do that, it returns a “DataFrame”( A table of rows and columns) that stores data.
I think you need json_normalize
:
from pandas import json_normalize
df = json_normalize(d, 'abc')
print (df)
amount price tid timestamp type
0 2321.379525 0.000062 8577050 1498649162 bid
1 498.789936 0.000062 8577047 1498649151 bid
For multiple keys is possible use concat
with list comprehension
and DataFrame
constructor:
d = {'abc': [{'type': 'bid', 'price': 6.194e-05, 'amount': 2321.37952545, 'tid': 8577050, 'timestamp': 1498649162}, {'type': 'bid', 'price': 6.194e-05, 'amount': 498.78993587, 'tid': 8577047, 'timestamp': 1498649151}],
'def': [{'type': 'bid', 'price': 6.194e-05, 'amount': 2321.37952545, 'tid': 8577050, 'timestamp': 1498649162}, {'type': 'bid', 'price': 6.194e-05, 'amount': 498.78993587, 'tid': 8577047, 'timestamp': 1498649151}]}
df = pd.concat([pd.DataFrame(v) for k,v in d.items()], keys=d)
print (df)
amount price tid timestamp type
abc 0 2321.379525 0.000062 8577050 1498649162 bid
1 498.789936 0.000062 8577047 1498649151 bid
def 0 2321.379525 0.000062 8577050 1498649162 bid
1 498.789936 0.000062 8577047 1498649151 bid
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With