I am trying to spin up an emr cluster with fair scheduling such that I can run multiple steps in parallel. I see that this is possible via pipeline (https://aws.amazon.com/about-aws/whats-new/2015/06/run-parallel-hadoop-jobs-on-your-amazon-emr-cluster-using-aws-data-pipeline/), but I already have cluster management / creating automated via an airflow job calling the awscli[1] so it would be great to just update my configurations.
aws emr create-cluster \
--applications Name=Spark Name=Ganglia \
--ec2-attributes "${EC2_PROPERTIES}" \
--service-role EMR_DefaultRole \
--release-label emr-5.8.0 \
--log-uri ${S3_LOGS} \
--enable-debugging \
--name ${CLUSTER_NAME} \
--region us-east-1 \
--instance-groups InstanceGroupType=MASTER,InstanceCount=1,InstanceType=m3.xlarge InstanceGroupType=CORE,InstanceCount=4,InstanceType=m3.xlarge)
I think it may be achieved using the --configurations (https://docs.aws.amazon.com/cli/latest/reference/emr/create-cluster.html) flag, but not sure of the correct env names
Yes, you are correct. You can use EMR configurations to achieve your goal. You can create a JSON file with something like below :
yarn-config.json:
[
{
"Classification": "yarn-site",
"Properties": {
"yarn.resourcemanager.scheduler.class": "org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler"
}
}
]
as per Hadoop Fair Scheduler docs
Then modify you AWS CLI as :
aws emr create-cluster \
--applications Name=Spark Name=Ganglia \
--ec2-attributes "${EC2_PROPERTIES}" \
--service-role EMR_DefaultRole \
--release-label emr-5.8.0 \
--log-uri ${S3_LOGS} \
--enable-debugging \
--name ${CLUSTER_NAME} \
--region us-east-1 \
--instance-groups \
--configurations file://yarn-config.json
InstanceGroupType=MASTER,InstanceCount=1,InstanceType=m3.xlarge
InstanceGroupType=CORE,InstanceCount=4,InstanceType=m3.xlarge)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With