I have the following tibble:
df <- structure(list(gene_symbol = c("0610005C13Rik", "0610007P14Rik",
"0610009B22Rik", "0610009L18Rik", "0610009O20Rik", "0610010B08Rik"
), foo.control.cv = c(1.16204038288333, 0.120508045270669, 0.205712615954009,
0.504508040948641, 0.333956330117591, 0.543693011377001), foo.control.mean = c(2.66407458486012,
187.137728870855, 142.111269303428, 16.7278587043453, 69.8602872478098,
4.77769028710622), foo.treated.cv = c(0.905769898934564, 0.186441944401973,
0.158552512842753, 0.551955061149896, 0.15743983656006, 0.290447431974039
), foo.treated.mean = c(2.40658723367692, 180.846795140269, 139.054032348287,
11.8584348984435, 76.8141734599118, 2.24088124240385)), .Names = c("gene_symbol",
"foo.control.cv", "foo.control.mean", "foo.treated.cv", "foo.treated.mean"
), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,
6L))
Which looks like this:
# A tibble: 6 × 5
gene_symbol foo.control.cv foo.control.mean foo.treated.cv foo.treated.mean
* <chr> <dbl> <dbl> <dbl> <dbl>
1 0610005C13Rik 1.1620404 2.664075 0.9057699 2.406587
2 0610007P14Rik 0.1205080 187.137729 0.1864419 180.846795
3 0610009B22Rik 0.2057126 142.111269 0.1585525 139.054032
4 0610009L18Rik 0.5045080 16.727859 0.5519551 11.858435
5 0610009O20Rik 0.3339563 69.860287 0.1574398 76.814173
6 0610010B08Rik 0.5436930 4.777690 0.2904474 2.240881
What I want to do is to replace all column names with mean
in it into mean_expr
. Resulting in
gene_symbol foo.control.cv foo.control.mean_expr foo.treated.cv foo.treated.mean_expr
1 0610005C13Rik 1.1620404 2.664075 0.9057699 2.406587
2 0610007P14Rik 0.1205080 187.137729 0.1864419 180.846795
3 0610009B22Rik 0.2057126 142.111269 0.1585525 139.054032
4 0610009L18Rik 0.5045080 16.727859 0.5519551 11.858435
5 0610009O20Rik 0.3339563 69.860287 0.1574398 76.814173
6 0610010B08Rik 0.5436930 4.777690 0.2904474 2.240881
How can I achieve that?
rename() function from dplyr takes a syntax rename(new_column_name = old_column_name) to change the column from old to a new name. The following example renames the column from id to c1 . The operator – %>% is used to load the renamed column names to the data frame.
Use mutate() and its other verbs mutate_all() , mutate_if() and mutate_at() from R dplyr package to replace/update the values of the column (string, integer, or any type) in DataFrame (data. frame). For more methods of this package refer to the R dplyr tutorial.
Rename columns with the select() functionYou can actually use the select() function from dplyr to rename variables. Syntactically, this is almost exactly the same as our code using rename() . We just supply the dataframe and the pair of variable names – the new variable name and the old variable name.
With current versions of dplyr, you can use rename_at
:
library(dplyr)
df %>% rename_at(vars(contains('mean')), funs(sub('mean', 'mean_expr', .)))
#> # A tibble: 6 × 5
#> gene_symbol foo.control.cv foo.control.mean_expr foo.treated.cv
#> * <chr> <dbl> <dbl> <dbl>
#> 1 0610005C13Rik 1.1620404 2.664075 0.9057699
#> 2 0610007P14Rik 0.1205080 187.137729 0.1864419
#> 3 0610009B22Rik 0.2057126 142.111269 0.1585525
#> 4 0610009L18Rik 0.5045080 16.727859 0.5519551
#> 5 0610009O20Rik 0.3339563 69.860287 0.1574398
#> 6 0610010B08Rik 0.5436930 4.777690 0.2904474
#> # ... with 1 more variables: foo.treated.mean_expr <dbl>
Really, you could use rename_all
, as well, as names that don't match would be unaffected anyway. Further, you can use a quosure or anything that can be coerced to a function by rlang::as_function
for .funs
, so you can use purrr-style notation:
df %>% rename_all(~sub('mean', 'mean_expr', .x))
Since a data frame is a list, purrr's set_names
can do the same thing:
library(purrr) # or library(tidyverse)
df %>% set_names(~sub('mean', 'mean_expr', .x))
All return the same thing.
Another option is to paste
in rename_at
(using the devel version of dplyr)
library(dplyr)
df %>%
rename_at(vars(matches('mean')), funs(sprintf('%s_expr', .)))
# A tibble: 6 × 5
# gene_symbol foo.control.cv foo.control.mean_expr foo.treated.cv foo.treated.mean_expr
#* <chr> <dbl> <dbl> <dbl> <dbl>
#1 0610005C13Rik 1.1620404 2.664075 0.9057699 2.406587
#2 0610007P14Rik 0.1205080 187.137729 0.1864419 180.846795
#3 0610009B22Rik 0.2057126 142.111269 0.1585525 139.054032
#4 0610009L18Rik 0.5045080 16.727859 0.5519551 11.858435
#5 0610009O20Rik 0.3339563 69.860287 0.1574398 76.814173
#6 0610010B08Rik 0.5436930 4.777690 0.2904474 2.240881
Or using rename_if
df %>%
rename_if(grepl("mean", names(.)), funs(sprintf("%s_expr", .)))
Here is a non-dplyr base R method:
names(df) <- sub("mean$", "mean_expr", names(df))
# or names(df) <- sub("mean", "mean_expr", names(df)) if the mean doesn't have to be at the
# end of the string
names(df)
#[1] "gene_symbol" "foo.control.cv" "foo.control.mean_expr"
#[4] "foo.treated.cv" "foo.treated.mean_expr"
If you want it to be a part of the pipe, you can make use of setNames function:
df %>% setNames(sub("mean", "mean_expr", names(.))) %>% names(.)
#[1] "gene_symbol" "foo.control.cv" "foo.control.mean_expr"
#[4] "foo.treated.cv" "foo.treated.mean_expr"
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With