I have the following code:
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(123456)
import pandas as pd
df = pd.DataFrame(3 * np.random.rand(4, 4), index=['a', 'b', 'c', 'd'],
columns=['x', 'y','z','w'])
plt.style.use('ggplot')
colors = plt.rcParams['axes.color_cycle']
fig, axes = plt.subplots(nrows=2, ncols=3)
for ax in axes.flat:
ax.axis('off')
for ax, col in zip(axes.flat, df.columns):
ax.pie(df[col], labels=df.index, autopct='%.2f', colors=colors)
ax.set(ylabel='', title=col, aspect='equal')
axes[0, 0].legend(bbox_to_anchor=(0, 0.5))
fig.savefig('your_file.png') # Or whichever format you'd like
plt.show()
Which produce the following:
My question is, how can I remove the label based on a condition. For example I'd only want to display labels with percent > 20%. Such that the labels and value of a,c,d
won't be displayed in X, etc.
MatPlotLib with Python Plot a pie chart using pie() method. To hide the label on the left side in matplotlib, we can use plt. ylabel("") with ablank string.
To avoid overlapping of labels and autopct in a matplotlib pie chart, we can follow label as a legend, using legend() method.
The autopct
argument from pie
can be a callable, which will receive the current percentage. So you only would need to provide a function that returns an empty string for the values you want to omit the percentage.
def my_autopct(pct):
return ('%.2f' % pct) if pct > 20 else ''
ax.pie(df[col], labels=df.index, autopct=my_autopct, colors=colors)
If you need to parametrize the value on the autopct
argument, you'll need a function that returns a function, like:
def autopct_generator(limit):
def inner_autopct(pct):
return ('%.2f' % pct) if pct > limit else ''
return inner_autopct
ax.pie(df[col], labels=df.index, autopct=autopct_generator(20), colors=colors)
For the labels, the best thing I can come up with is using list comprehension:
for ax, col in zip(axes.flat, df.columns):
data = df[col]
labels = [n if v > data.sum() * 0.2 else ''
for n, v in zip(df.index, data)]
ax.pie(data, autopct=my_autopct, colors=colors, labels=labels)
Note, however, that the legend by default is being generated from the first passed labels, so you'll need to pass all values explicitly to keep it intact.
axes[0, 0].legend(df.index, bbox_to_anchor=(0, 0.5))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With