I need to downgrade numpy version:
python -c "import numpy; print(numpy.__version__)"
1.16.4
conda install numpy==1.14.3
Collecting package metadata (current_repodata.json): done
Solving environment: failed with current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: failed
Initial quick solve with frozen env failed. Unfreezing env and trying again.
Solving environment: failed
UnsatisfiableError: The following specifications were found to be incompatible with a past
explicit spec that is not an explicit spec in this operation (numpy):
- numpy==1.14.3
The following specifications were found to be incompatible with each other:
Package numpy-base conflicts for:
mkl_random -> numpy[version='>=1.11.3,<2.0a0'] -> mkl_fft[version='>=1.0.6,<2.0a0'] -> numpy-base[version='>=1.0.6,<2.0a0']
mkl_fft -> numpy[version='>=1.11.3,<2.0a0'] -> mkl_random[version='>=1.0.2,<2.0a0'] -> numpy-base[version='>=1.0.2,<2.0a0']
numpy-base
pytorch==1.1.0 -> numpy[version='>=1.11.3,<2.0a0'] -> mkl_random[version='>=1.0.2,<2.0a0'] -> numpy-base[version='>=1.0.2,<2.0a0']
numpy==1.14.3 -> mkl_random[version='>=1.0.2,<2.0a0'] -> numpy-base[version='>=1.0.2,<2.0a0']
Package numpy conflicts for:
mkl_fft -> numpy[version='>=1.11.3,<2.0a0']
mkl_random -> numpy[version='>=1.11.3,<2.0a0']
pytorch==1.1.0 -> numpy[version='>=1.11.3,<2.0a0']
Not sure why this happens numpy==1.14.3
is in range numpy[version='>=1.11.3,<2.0a0']
, how to fix it?
Update:
Uninstalling via conda uninstall numpy-base
will delete other packages which is not desirable:
conda uninstall numpy-base
Collecting package metadata (repodata.json): done
Solving environment: done
removed specs:
- numpy-base
The following packages will be REMOVED:
blas-1.0-mkl
cffi-1.12.3-py36h2e261b9_0
cudatoolkit-10.0.130-0
cudnn-7.6.0-cuda10.0_0
intel-openmp-2019.4-243
libgfortran-ng-7.3.0-hdf63c60_0
mkl-2019.4-243
mkl-service-2.0.2-py36h7b6447c_0
mkl_fft-1.0.14-py36ha843d7b_0
mkl_random-1.0.2-py36hd81dba3_0
ninja-1.9.0-py36hfd86e86_0
numpy-1.16.4-py36h7e9f1db_0
numpy-base-1.16.4-py36hde5b4d6_0
pycparser-2.19-py36_0
pytorch-1.1.0-cuda100py36he554f03_0
six-1.12.0-py36_0
How to check the Numpy version. To check a numpy version, write the numpy. __version__ code and run the file. It will return the current version of numpy installed on your machine.
You could simply install the correct version using the command
conda install -c conda-forge numpy=1.16.4
conda will automatically take care of downgrading to your version correctly
If downgrading to an specific version of numpy takes forever while conda is solving the environment, or conda is unable to resolve the conflicts, you can use conda-tree to inspect the dependences and then manually uninstall with conda (or attempt to downgrade) the incompatible packages. However note that creating a new environment with the correct numpy version could be faster if there are many dependences (you may use mamba to speed up the process).
conda install -c conda-forge conda-tree
conda-tree whoneeds -t numpy
This will display a tree with the supported numpy versions for each dependent package:
numpy==1.20.3
├─ h5py 3.2.1 [required: >=1.16.6,<2.0a0]
│ └─ tensorflow-base 2.5.0 [required: >=3.1.0]
│ └─ tensorflow 2.5.0 [required: 2.5.0, gpu_py37hb3da07e_0]
│ └─ tensorflow-gpu 2.5.0 [required: 2.5.0]
├─ keras-preprocessing 1.1.2 [required: >=1.9.1]
│ └─ tensorflow-base 2.5.0 [required: >=1.1.2]
│ └─ dependent packages of tensorflow-base displayed above
├─ matplotlib-base 3.4.2 [required: >=1.17.5,<2.0a0]
│ └─ matplotlib 3.4.2 [required: >=3.4.2,<3.4.3.0a0]
├─ opt_einsum 3.3.0 [required: any]
│ └─ tensorflow-base 2.5.0 [required: 3.3.0.*]
│ └─ dependent packages of tensorflow-base displayed above
├─ pandas 1.2.5 [required: >=1.20.2,<2.0a0]
│ └─ statsmodels 0.12.2 [required: >=0.21]
├─ patsy 0.5.1 [required: >=1.4.0]
│ └─ statsmodels 0.12.2 [required: >=0.5.1]
├─ scipy 1.6.2 [required: >=1.16.6,<2.0a0]
│ ├─ keras-preprocessing 1.1.2 [required: >=0.14]
│ │ └─ dependent packages of keras-preprocessing displayed above
│ ├─ patsy 0.5.1 [required: any]
│ │ └─ dependent packages of patsy displayed above
│ ├─ statsmodels 0.12.2 [required: >=1.0]
│ └─ tensorflow-base 2.5.0 [required: >=1.6.2]
│ └─ dependent packages of tensorflow-base displayed above
├─ statsmodels 0.12.2 [required: >=1.17.0,<2.0a0]
├─ tensorboard 2.5.0 [required: >=1.12.0]
│ ├─ tensorflow 2.5.0 [required: >=2.5.0]
│ │ └─ dependent packages of tensorflow displayed above
│ └─ tensorflow-base 2.5.0 [required: >=2.5.0,<2.6]
│ └─ dependent packages of tensorflow-base displayed above
├─ tensorflow-base 2.5.0 [required: >=1.20]
│ └─ dependent packages of tensorflow-base displayed above
└─ tensorflow-estimator 2.5.0 [required: >=1.16.1]
├─ tensorflow 2.5.0 [required: >=2.5.0]
│ └─ dependent packages of tensorflow displayed above
└─ tensorflow-base 2.5.0 [required: >=2.5.0,<2.6]
└─ dependent packages of tensorflow-base displayed above
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With