My dataframe reads like :
df1
user_id username firstname lastname
123 abc abc abc
456 def def def
789 ghi ghi ghi
df2
user_id username firstname lastname
111 xyz xyz xyz
456 def def def
234 mnp mnp mnp
Now I want a output dataframe like
user_id username firstname lastname
123 abc abc abc
456 def def def
789 ghi ghi ghi
111 xyz xyz xyz
234 mnp mnp mnp
As user_id 456
is common across both the dataframes. I have tried groupby on user_id groupby(['user_id'])
. But looks like groupby need to be followed by some aggregation
which I don't want here.
Use concat
+ drop_duplicates
:
df = pd.concat([df1, df2]).drop_duplicates('user_id').reset_index(drop=True)
print (df)
user_id username firstname lastname
0 123 abc abc abc
1 456 def def def
2 789 ghi ghi ghi
3 111 xyz xyz xyz
4 234 mnp mnp mnp
Solution with groupby
and aggregate first
is slowier:
df = pd.concat([df1, df2]).groupby('user_id', as_index=False, sort=False).first()
print (df)
user_id username firstname lastname
0 123 abc abc abc
1 456 def def def
2 789 ghi ghi ghi
3 111 xyz xyz xyz
4 234 mnp mnp mnp
EDIT:
Another solution with boolean indexing
and numpy.in1d
:
df = pd.concat([df1, df2[~np.in1d(df2['user_id'], df1['user_id'])]], ignore_index=True)
print (df)
user_id username firstname lastname
0 123 abc abc abc
1 456 def def def
2 789 ghi ghi ghi
3 111 xyz xyz xyz
4 234 mnp mnp mnp
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With