Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Compute the similarity between two lists

I'd like to compute the similarity between two lists of various lengths.

eg:

listA = ['apple', 'orange', 'apple', 'apple', 'banana', 'orange'] # (length = 6)
listB = ['apple', 'orange', 'grapefruit', 'apple'] # (length = 4)

as you can see, a single item can appear multiple times in a list, and the lengths are of different sizes.

I've already thought of comparing the frequencies of each item, but that does not encompass the size of each list (a list that is simply twice another list should be similar, but not perfectly similar)

eg2:

listA = ['apple', 'apple', 'orange', 'orange']
listB = ['apple', 'orange']
similarity(listA, listB) # should NOT equal 1

So I basically want to encompass the size of the lists, and the distribution of items in the list.

Any ideas?

like image 700
kmace Avatar asked Feb 06 '13 01:02

kmace


2 Answers

Use collections.Counter() perhaps; those are multi-sets, or bags, in datatype parlance:

from collections import Counter

counterA = Counter(listA)
counterB = Counter(listB)

Now you can compare these by entries or frequencies:

>>> counterA
Counter({'apple': 3, 'orange': 2, 'banana': 1})
>>> counterB
Counter({'apple': 2, 'orange': 1, 'grapefruit': 1})
>>> counterA - counterB
Counter({'orange': 1, 'apple': 1, 'banana': 1})
>>> counterB - counterA
Counter({'grapefruit': 1})

You can calculate their cosine similarity using:

import math

def counter_cosine_similarity(c1, c2):
    terms = set(c1).union(c2)
    dotprod = sum(c1.get(k, 0) * c2.get(k, 0) for k in terms)
    magA = math.sqrt(sum(c1.get(k, 0)**2 for k in terms))
    magB = math.sqrt(sum(c2.get(k, 0)**2 for k in terms))
    return dotprod / (magA * magB)

Which gives:

>>> counter_cosine_similarity(counterA, counterB)
0.8728715609439696

The closer to 1 that value, the more similar the two lists are.

The cosine similarity is one score you can calculate. If you care about the length of the list, you can calculate another; if you keep that score between 0.0 and 1.0 as well you can multiply the two values for a final score between -1.0 and 1.0.

For example, to take relative lengths into account you could use:

def length_similarity(c1, c2):
    lenc1 = sum(c1.itervalues())
    lenc2 = sum(c2.itervalues())
    return min(lenc1, lenc2) / float(max(lenc1, lenc2))

and then combine into a function that takes the lists as inputs:

def similarity_score(l1, l2):
    c1, c2 = Counter(l1), Counter(l2)
    return length_similarity(c1, c2) * counter_cosine_similarity(c1, c2)  

For your two example lists, that results in:

>>> similarity_score(['apple', 'orange', 'apple', 'apple', 'banana', 'orange'], ['apple', 'orange', 'grapefruit', 'apple'])
0.5819143739626463
>>> similarity_score(['apple', 'apple', 'orange', 'orange'], ['apple', 'orange'])
0.4999999999999999

You can mix in other metrics as needed.

like image 81
Martijn Pieters Avatar answered Oct 22 '22 03:10

Martijn Pieters


From a theoretical point of view : I recommend you look up cosine similarity http://en.wikipedia.org/wiki/Cosine_similarity

You may have to modify to fit your scheme, but the idea of cosine similarity is great.

like image 24
Vigneshwaren Avatar answered Oct 22 '22 04:10

Vigneshwaren