I want to be able to compare Decimals in Python. For the sake of making calculations with money, clever people told me to use Decimals instead of floats, so I did. However, if I want to verify that a calculation produces the expected result, how would I go about it?
>>> a = Decimal(1./3.)
>>> a
Decimal('0.333333333333333314829616256247390992939472198486328125')
>>> b = Decimal(2./3.)
>>> b
Decimal('0.66666666666666662965923251249478198587894439697265625')
>>> a == b
False
>>> a == b - a
False
>>> a == b - Decimal(1./3.)
False
so in this example a = 1/3 and b = 2/3, so obviously b-a = 1/3 = a, however, that cannot be done with Decimals.
I guess a way to do it is to say that I expect the result to be 1/3, and in python i write this as
Decimal(1./3.).quantize(...)
and then I can compare it like this:
(b-a).quantize(...) == Decimal(1./3.).quantize(...)
So, my question is: Is there a cleaner way of doing this? How would you write tests for Decimals?
How To Compare Floats in Python. If abs(a - b) is smaller than some percentage of the larger of a or b , then a is considered sufficiently close to b to be "equal" to b . This percentage is called the relative tolerance. You can specify the relative tolerance with the rel_tol keyword argument of math.
The == operator compares the value or equality of two objects, whereas the Python is operator checks whether two variables point to the same object in memory. In the vast majority of cases, this means you should use the equality operators == and != , except when you're comparing to None .
You are not using Decimal
the right way.
>>> from decimal import *
>>> Decimal(1./3.) # Your code
Decimal('0.333333333333333314829616256247390992939472198486328125')
>>> Decimal("1")/Decimal("3") # My code
Decimal('0.3333333333333333333333333333')
In "your code", you actually perform "classic" floating point division -- then convert the result to a decimal. The error introduced by floats is propagated to your Decimal.
In "my code", I do the Decimal division. Producing a correct (but truncated) result up to the last digit.
Concerning the rounding. If you work with monetary data, you must know the rules to be used for rounding in your business. If not so, using Decimal
will not automagically solve all your problems. Here is an example: $100 to be share between 3 shareholders.
>>> TWOPLACES = Decimal(10) ** -2
>>> dividende = Decimal("100.00")
>>> john = (dividende / Decimal("3")).quantize(TWOPLACES)
>>> john
Decimal('33.33')
>>> paul = (dividende / Decimal("3")).quantize(TWOPLACES)
>>> georges = (dividende / Decimal("3")).quantize(TWOPLACES)
>>> john+paul+georges
Decimal('99.99')
Oups: missing $.01 (free gift for the bank ?)
Your verbiage states you want to to monetary calculations, minding your round off error. Decimals are a good choice, as they yield EXACT results under addition, subtraction, and multiplication with other Decimals.
Oddly, your example shows working with the fraction "1/3". I've never deposited exactly "one-third of a dollar" in my bank... it isn't possible, as there is no such monetary unit!
My point is if you are doing any DIVISION, then you need to understand what you are TRYING to do, what the organization's policies are on this sort of thing... in which case it should be possible to implement what you want with Decimal quantizing.
Now -- if you DO really want to do division of Decimals, and you want to carry arbitrary "exactness" around, you really don't want to use the Decimal
object... You want to use the Fraction
object.
With that, your example would work like this:
>>> from fractions import Fraction
>>> a = Fraction(1,3)
>>> a
Fraction(1, 3)
>>> b = Fraction(2,3)
>>> b
Fraction(2, 3)
>>> a == b
False
>>> a == b - a
True
>>> a + b == Fraction(1, 1)
True
>>> 2 * a == b
True
OK, well, even a caveat there: Fraction
objects are the ratio of two integers, so you'd need to multiply by the right power of 10 and carry that around ad-hoc.
Sound like too much work? Yes... it probably is!
So, head back to the Decimal object; implement quantization/rounding upon Decimal division and Decimal multiplication.
Floating-point arithmetics is not accurate :
Decimal numbers can be represented exactly. In contrast, numbers like 1.1 and 2.2 do not have exact representations in binary floating point. End users typically would not expect
1.1 + 2.2
to display as3.3000000000000003
as it does with binary floating point
You have to choose a resolution and truncate everything past it :
>>> from decimal import *
>>> getcontext().prec = 6
>>> Decimal(1) / Decimal(7)
Decimal('0.142857')
>>> getcontext().prec = 28
>>> Decimal(1) / Decimal(7)
Decimal('0.1428571428571428571428571429')
You will obviously get some rounding error which will grow with the number of operations so you have to choose your resolution carefully.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With