I have a list of vectors which are time series of inequal length. My ultimate goal is to plot the time series in a ggplot2
graph. I guess I am better off first merging the vectors in a dataframe (where the shorter vectors will be expanded with NAs), also because I want to export the data in a tabular format such as .csv to be perused by other people.
I have a list that contains the names of all the vectors. It is fine that the column titles be set by the first vector, which is the longest. E.g.:
> mylist
[[1]]
[1] "vector1"
[[2]]
[1] "vector2"
[[3]]
[1] "vector3"
etc.
I know the way to go is to use Hadley's plyr
package but I guess the problem is that my list contains the names of the vectors, not the vectors themselves, so if I type:
do.call(rbind, mylist)
I get a one-column df containing the names of the dfs I wanted to merge.
> do.call(rbind, actives)
[,1]
[1,] "vector1"
[2,] "vector2"
[3,] "vector3"
[4,] "vector4"
[5,] "vector5"
[6,] "vector6"
[7,] "vector7"
[8,] "vector8"
[9,] "vector9"
[10,] "vector10"
etc.
Even if I create a list with the object themselves, I get an empty dataframe :
mylist <- list(vector1, vector2)
mylist
[[1]]
1 2 3 4 5 6 7 8 9 10 11 12
0.1875000 0.2954545 0.3295455 0.2840909 0.3011364 0.3863636 0.3863636 0.3295455 0.2954545 0.3295455 0.3238636 0.2443182
13 14 15 16 17 18 19 20 21 22 23 24
0.2386364 0.2386364 0.3238636 0.2784091 0.3181818 0.3238636 0.3693182 0.3579545 0.2954545 0.3125000 0.3068182 0.3125000
25 26 27 28 29 30 31 32 33 34 35 36
0.2727273 0.2897727 0.2897727 0.2727273 0.2840909 0.3352273 0.3181818 0.3181818 0.3409091 0.3465909 0.3238636 0.3125000
37 38 39 40 41 42 43 44 45 46 47 48
0.3125000 0.3068182 0.2897727 0.2727273 0.2840909 0.3011364 0.3181818 0.2329545 0.3068182 0.2386364 0.2556818 0.2215909
49 50 51 52 53 54 55 56 57 58 59 60
0.2784091 0.2784091 0.2613636 0.2329545 0.2443182 0.2727273 0.2784091 0.2727273 0.2556818 0.2500000 0.2159091 0.2329545
61
0.2556818
[[2]]
1 2 3 4 5 6 7 8 9 10 11 12
0.2824427 0.3664122 0.3053435 0.3091603 0.3435115 0.3244275 0.3320611 0.3129771 0.3091603 0.3129771 0.2519084 0.2557252
13 14 15 16 17 18 19 20 21 22 23 24
0.2595420 0.2671756 0.2748092 0.2633588 0.2862595 0.3549618 0.2786260 0.2633588 0.2938931 0.2900763 0.2480916 0.2748092
25 26 27 28 29 30 31 32 33 34 35 36
0.2786260 0.2862595 0.2862595 0.2709924 0.2748092 0.3396947 0.2977099 0.2977099 0.2824427 0.3053435 0.3129771 0.2977099
37 38 39 40 41 42 43 44 45 46 47 48
0.3320611 0.3053435 0.2709924 0.2671756 0.2786260 0.3015267 0.2824427 0.2786260 0.2595420 0.2595420 0.2442748 0.2099237
49 50 51 52 53 54 55 56 57 58 59 60
0.2022901 0.2251908 0.2099237 0.2213740 0.2213740 0.2480916 0.2366412 0.2251908 0.2442748 0.2022901 0.1793893 0.2022901
but
do.call(rbind.fill, mylist)
data frame with 0 columns and 0 rows
I have tried converting the vectors to dataframes, but there is no cbind.fill
function, so plyr complains that the dataframes are of different length.
So my questions are:
Is this the best approach? Keep in mind that the goals are a) a ggplot2 graph and b) a table with the time series, to be viewed outside of R
What is the best way to get a list of objects starting with a list of the names of those objects?
What the best type of graph to highlight the patterns of 60 timeseries? The scale is the same, but I predict there'll be a lot of overplotting. Since this is a cohort analysis, it might be useful to use color to highlight the different cohorts in terms of recency (as a continuous variable). But how to avoid overplotting? The differences will be minimal so faceting might leave the viewer unable to grasp the difference.
To create a data frame of unequal length, we add the NA value at the end of the columns which are smaller in the lengths and makes them equal to the column which has the maximum length among all and with this process all the length becomes equal and the user is able to process operations on that data frame in R ...
cbind() and rbind() both create matrices by combining several vectors of the same length. cbind() combines vectors as columns, while rbind() combines them as rows.
I think that you may be approaching this the wrong way:
If you have time series of unequal length then the absolute best thing to do is to keep them as time series and merge
them. Most time series packages allow this. So you will end up with a multi-variate time series and each value will be properly associated with the same date.
So put your time series into zoo
objects, merge
them, then use my qplot.zoo
function to plot them. That will deal with switching from zoo
into a long data frame.
Here's an example:
> z1 <- zoo(1:8, 1:8)
> z2 <- zoo(2:8, 2:8)
> z3 <- zoo(4:8, 4:8)
> nm <- list("z1", "z2", "z3")
> z <- zoo()
> for(i in 1:length(nm)) z <- merge(z, get(nm[[i]]))
> names(z) <- unlist(nm)
> z
z1 z2 z3
1 1 NA NA
2 2 2 NA
3 3 3 NA
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
8 8 8 8
>
> x.df <- data.frame(dates=index(x), coredata(x))
> x.df <- melt(x.df, id="dates", variable="val")
> ggplot(na.omit(x.df), aes(x=dates, y=value, group=val, colour=val)) + geom_line() + opts(legend.position = "none")
If you're doing it just because ggplot2 (as well as many other things) like data frames then what you're missing is that you need the data in long format data frames. Yes, you just put all of your response variables in one column concatenated together. Then you would have 1 or more other columns that identify what makes those responses different. That's the best way to have it set up for things like ggplot.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With