Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

color detection using opencv python

Tags:

python

opencv

I am trying to run a script written using opencv in python which uses webcam to track colored objects (here the object is blue colored), which is also mentioned in opencv's documentation here

import cv2
import numpy as np

cap = cv2.VideoCapture(0)

while(1):

    # Take each frame
    _, frame = cap.read()

    # Convert BGR to HSV
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

    # define range of blue color in HSV
    lower_blue = np.array([110,50,50])
    upper_blue = np.array([130,255,255])

    # Threshold the HSV image to get only blue colors
    mask = cv2.inRange(hsv, lower_blue, upper_blue)

    # Bitwise-AND mask and original image
    res = cv2.bitwise_and(frame,frame, mask= mask)

    cv2.imshow('frame',frame)
    cv2.imshow('mask',mask)
    cv2.imshow('res',res)
    k = cv2.waitKey(5) & 0xFF
    if k == 27:
        break

cv2.destroyAllWindows()

But this code produces error :

OpenCV Error: Sizes of input arguments do not match (The lower bounary is neither an      array of the same size and same type as src, nor a scalar) in inRange, file     /build/buildd/opencv-2.4.2+dfsg/modules/core/src/arithm.cpp, line 2527
Traceback (most recent call last):
File "blue.py", line 19, in <module>
mask = cv2.inRange(hsv, lower_blue, upper_blue)
cv2.error: /build/buildd/opencv-2.4.2+dfsg/modules/core/src/arithm.cpp:2527: error: (     (-209) The lower bounary is neither an array of the same size and same type as src, nor a scalar in function inRange

I've tried solutions provided in related stackoverflow questions, but none of them helped. What is the problem with the code ? why this error arises ?

I'm using opencv 2.4.2 & python 2.7 on ubuntu

like image 446
Vipul Avatar asked Jan 03 '14 21:01

Vipul


People also ask

Can OpenCV detect color?

OpenCV has some built-in functions to perform Color detection and Segmentation operations.

How can you identify a color?

Colour sensors detect colours by emitting light (RGB, red, green, blue) to a surface. The colour values ​​are calculated from the reflecting beams and compared with previously stored reference values.

What is color detection in image processing?

A color detection algorithm identifies pixels in an image that match a specified color or color range. The color of detected pixels can then be changed to distinguish them from the rest of the image.

What is the use of color detection?

It can recognize and detect colors and has many good new features in comparison with other color sensors. It is adequate for colorimeter measurement applications, such as medical diagnosis, color printing, computer color monitor calibration, and cosmetics, paint, textile and the process control of printing materials.


2 Answers

The range of blue color in HSV should be given as :

lower_blue = np.array([110, 50, 50], dtype=np.uint8)
upper_blue = np.array([130,255,255], dtype=np.uint8)
like image 188
Vipul Avatar answered Oct 01 '22 06:10

Vipul


Here's a HSV color threshold script to determine the lower and upper ranges instead of guess-and-checking

enter image description here

import cv2
import sys
import numpy as np

def nothing(x):
    pass

# Load in image
image = cv2.imread('1.png')

# Create a window
cv2.namedWindow('image')

# create trackbars for color change
cv2.createTrackbar('HMin','image',0,179,nothing) # Hue is from 0-179 for Opencv
cv2.createTrackbar('SMin','image',0,255,nothing)
cv2.createTrackbar('VMin','image',0,255,nothing)
cv2.createTrackbar('HMax','image',0,179,nothing)
cv2.createTrackbar('SMax','image',0,255,nothing)
cv2.createTrackbar('VMax','image',0,255,nothing)

# Set default value for MAX HSV trackbars.
cv2.setTrackbarPos('HMax', 'image', 179)
cv2.setTrackbarPos('SMax', 'image', 255)
cv2.setTrackbarPos('VMax', 'image', 255)

# Initialize to check if HSV min/max value changes
hMin = sMin = vMin = hMax = sMax = vMax = 0
phMin = psMin = pvMin = phMax = psMax = pvMax = 0

output = image
wait_time = 33

while(1):

    # get current positions of all trackbars
    hMin = cv2.getTrackbarPos('HMin','image')
    sMin = cv2.getTrackbarPos('SMin','image')
    vMin = cv2.getTrackbarPos('VMin','image')

    hMax = cv2.getTrackbarPos('HMax','image')
    sMax = cv2.getTrackbarPos('SMax','image')
    vMax = cv2.getTrackbarPos('VMax','image')

    # Set minimum and max HSV values to display
    lower = np.array([hMin, sMin, vMin])
    upper = np.array([hMax, sMax, vMax])

    # Create HSV Image and threshold into a range.
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    mask = cv2.inRange(hsv, lower, upper)
    output = cv2.bitwise_and(image,image, mask= mask)

    # Print if there is a change in HSV value
    if( (phMin != hMin) | (psMin != sMin) | (pvMin != vMin) | (phMax != hMax) | (psMax != sMax) | (pvMax != vMax) ):
        print("(hMin = %d , sMin = %d, vMin = %d), (hMax = %d , sMax = %d, vMax = %d)" % (hMin , sMin , vMin, hMax, sMax , vMax))
        phMin = hMin
        psMin = sMin
        pvMin = vMin
        phMax = hMax
        psMax = sMax
        pvMax = vMax

    # Display output image
    cv2.imshow('image',output)

    # Wait longer to prevent freeze for videos.
    if cv2.waitKey(wait_time) & 0xFF == ord('q'):
        break

cv2.destroyAllWindows()
like image 43
nathancy Avatar answered Oct 01 '22 07:10

nathancy