When I run a cluster standard error panel specification with plm
and lfe
I get results that differ at the second significant figure. Does anyone know why they differ in their calculation of the SE's?
set.seed(572015)
library(lfe)
library(plm)
library(lmtest)
# clustering example
x <- c(sapply(sample(1:20), rep, times = 1000)) + rnorm(20*1000, sd = 1)
y <- 5 + 10*x + rnorm(20*1000, sd = 10) + c(sapply(rnorm(20, sd = 10), rep, times = 1000))
facX <- factor(sapply(1:20, rep, times = 1000))
mydata <- data.frame(y=y,x=x,facX=facX, state=rep(1:1000, 20))
model <- plm(y ~ x, data = mydata, index = c("facX", "state"), effect = "individual", model = "within")
plmTest <- coeftest(model,vcov=vcovHC(model,type = "HC1", cluster="group"))
lfeTest <- summary(felm(y ~ x | facX | 0 | facX))
data.frame(lfeClusterSE=lfeTest$coefficients[2],
plmClusterSE=plmTest[2])
lfeClusterSE plmClusterSE
1 0.06746538 0.06572588
Clustering the standard erros You can use the vcovHC function in the plm package to construct the variance-covariance matrix. Alternatively, you can use the vcovHC function from the sandwich package to do the task. Or vcovCR function from the clubSandwich package to do the task.
In such DiD examples with panel data, the cluster-robust standard errors can be much larger than the default because both the regressor of interest and the errors are highly correlated within cluster. Note also that this complication can exist even with the inclusion of fixed effects (see Section III).
Clustered standard errors (or Liang-Zeger standard errors) are measurements that estimate the standard error of a regression parameter in settings where observations may be subdivided into smaller-sized groups ("clusters") and where the sampling and/or treatment assignment is correlated within each group.
The authors argue that there are two reasons for clustering standard errors: a sampling design reason, which arises because you have sampled data from a population using clustered sampling, and want to say something about the broader population; and an experimental design reason, where the assignment mechanism for some ...
The difference is in the degrees-of-freedom adjustment. This is the usual first guess when looking for differences in supposedly similar standard errors (see e.g., Different Robust Standard Errors of Logit Regression in Stata and R). Here, the problem can be illustrated when comparing the results from (1) plm
+vcovHC
, (2) felm
, (3) lm
+cluster.vcov
(from package multiwayvcov
).
First, I refit all models:
m1 <- plm(y ~ x, data = mydata, index = c("facX", "state"),
effect = "individual", model = "within")
m2 <- felm(y ~ x | facX | 0 | facX, data = mydata)
m3 <- lm(y ~ facX + x, data = mydata)
All lead to the same coefficient estimates. For m3
the fixed effects are explicitly reported while they are not for m1
and m2
. Hence, for m3
only the last coefficient is extracted with tail(..., 1)
.
all.equal(coef(m1), coef(m2))
## [1] TRUE
all.equal(coef(m1), tail(coef(m3), 1))
## [1] TRUE
The non-robust standard errors also agree.
se <- function(object) tail(sqrt(diag(object)), 1)
se(vcov(m1))
## x
## 0.07002696
se(vcov(m2))
## x
## 0.07002696
se(vcov(m3))
## x
## 0.07002696
And when comparing the clustered standard errors we can now show that felm
uses the degrees-of-freedom correction while plm
does not:
se(vcovHC(m1))
## x
## 0.06572423
m2$cse
## x
## 0.06746538
se(cluster.vcov(m3, mydata$facX))
## x
## 0.06746538
se(cluster.vcov(m3, mydata$facX, df_correction = FALSE))
## x
## 0.06572423
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With