I am trying to write a new monad that only can contain a Num. When it fails, it returns 0 much like the Maybe monad returns Nothing when it fails.
Here is what I have so far:
data (Num a) => IDnum a = IDnum a
instance Monad IDnum where
return x = IDnum x
IDnum x >>= f = f x
fail :: (Num a) => String -> IDnum a
fail _ = return 0
Haskell is complaining that there is
No instance for (Num a) arising from a use of `IDnum'
It suggests that I add a add (Num a) to the context of the type signature for each of my monad functions, but I tried that it and then it complains that they need to work "forall" a.
Ex:
Method signature does not match class; it should be
return :: forall a. a -> IDnum a
In the instance declaration for `Monad IDnum'
Does anyone know how to fix this?
The existing Monad
typeclass expects your type to work for every possible type argument. Consider Maybe
: in Maybe a
, a
is not constrained at all. Basically you can't have a Monad with constraints.
This is a fundamental limitation of how the Monad
class is defined—I don't know of any way to get around it without modifying that.
This is also a problem for defining Monad
instances for other common types, like Set
.
In practice, this restriction is actually pretty important. Consider that (normally) functions are not instances of Num
. This means that we could not use your monad to contain a function! This really limits important operations like ap
(<*>
from Applicative
), since that depends on a monad containing a function:
ap :: Monad m => m (a -> b) -> m a -> m b
Your monad would not support many common uses and idioms we've grown to expect from normal monads! This would rather limit its utility.
Also, as a side-note, you should generally avoid using fail
. It doesn't really fit in with the Monad
typeclass: it's more of a historic accident. Most people agree that you should avoid it in general: it was just a hack to deal with failed pattern matches in do-notation.
That said, looking at how to define a restricted monad class is a great exercise for understanding a few Haskell extensions and learning some intermediate/advanced Haskell.
With the downsides in mind, here are a couple of alternatives—replacements for the standard Monad
class that do support restricted monads.
I can think of a couple of possible alternatives. The most modern one would be taking advantage of the ConstraintKind
extension in GHC, which lets you reify typeclass constraints as kinds. This blog post details how to implement a restricted monad using constraint kinds; once I've read it, I'll summarize it here.
The basic idea is simple: with ConstraintKind
, we can turn our constrain (Num a
) into a type. We can then have a new Monad
class which contains this type as a member (just like return
and fail
are members) and allows use to overload the constraint with Num a
. This is what the code looks like:
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE TypeFamilies #-}
module Main where
import Prelude hiding (Monad (..))
import GHC.Exts
class Monad m where
type Restriction m a :: Constraint
type Restriction m a = ()
return :: Restriction m a => a -> m a
(>>=) :: Restriction m a => m a -> (a -> m b) -> m b
fail :: Restriction m a => String -> m a
data IDnum a = IDnum a
instance Monad IDnum where
type Restriction IDnum a = Num a
return = IDnum
IDnum x >>= f = f x
fail _ = return 0
There is an existing library on hackage called rmonad (for "restricted monad") which provides a more general typeclass. You could probably use this to write your desired monad instance. (I haven't used it myself, so it's a bit hard to say.)
It doesn't use the ConstraintKinds
extension and (I believe) supports older versions of GHC. However, I think it's a bit ugly; I'm not sure that it's the best option any more.
Here's the code I came up with:
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeFamilies #-}
import Prelude hiding (Monad (..))
import Control.RMonad
import Data.Suitable
data IDnum a = IDnum a
data instance Constraints IDnum a = Num a => IDnumConstraints
instance Num a => Suitable IDnum a where
constraints = IDnumConstraints
instance RMonad IDnum where
return = IDnum
IDnum x >>= f = f x
fail _ = withResConstraints $ \ IDnumConstraints -> return 0
For more details, take a look at this SO question.
Oleg has an article about this pertaining specifically to the Set monad, which might be interesting: "How to restrict a monad without breaking it".
Finally, there are a couple of papers you could also read:
This answer will be brief, but here's another alternative to go along with Tikhon's. You can apply a codensity transformation to your type to basically get a free monad for it. Just use it (in the below code it's IDnumM
) instead of your base type, then convert the final value to your base type at the end (in the below code, you would use runIDnumM
). You can also inject your base type into the transformed type (in the below code, that would be toIDnumM
).
A benefit of this approach is that it works with the standard Monad
class.
data Num a => IDnum a = IDnum a
newtype IDnumM a = IDnumM { unIDnumM :: forall r. (a -> IDnum r) -> IDnum r }
runIDnumM :: Num a => IDnumM a -> IDnum a
runIDnumM (IDnumM n) = n IDnum
toIDnumM :: Num a => IDnum a -> IDnumM a
toIDnumM (IDnum x) = IDnumM $ \k -> k x
instance Monad IDnumM where
return x = IDnumM $ \k -> k x
IDnumM m >>= f = IDnumM $ \k -> m $ \x -> f x `unIDnumM` k
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With