Say I have a np.array like this:
a = [1, 3, 4, 5, 60, 43, 53, 4, 46, 54, 56, 78]
Is there a quick method to get the indices of all locations where 3 consecutive numbers are all above some threshold? That is, for some threshold th
, get all x
where this holds:
a[x]>th and a[x+1]>th and a[x+2]>th
Example: for threshold 40 and the list given above, x should be [4,8,9]
.
Many thanks.
Approach #1
Use convolution
on the mask of boolean array obtained after comparison -
In [40]: a # input array
Out[40]: array([ 1, 3, 4, 5, 60, 43, 53, 4, 46, 54, 56, 78])
In [42]: N = 3 # compare N consecutive numbers
In [44]: T = 40 # threshold for comparison
In [45]: np.flatnonzero(np.convolve(a>T, np.ones(N, dtype=int),'valid')>=N)
Out[45]: array([4, 8, 9])
Approach #2
Use binary_erosion
-
In [77]: from scipy.ndimage.morphology import binary_erosion
In [31]: np.flatnonzero(binary_erosion(a>T,np.ones(N, dtype=int), origin=-(N//2)))
Out[31]: array([4, 8, 9])
Approach #3 (Specific case) : Small numbers of consecutive numbers check
For checking such a small number of consecutive numbers (three in this case), we can also slicing
on the compared mask for better performance -
m = a>T
out = np.flatnonzero(m[:-2] & m[1:-1] & m[2:])
Timings on 100000
repeated/tiled array from given sample -
In [78]: a
Out[78]: array([ 1, 3, 4, 5, 60, 43, 53, 4, 46, 54, 56, 78])
In [79]: a = np.tile(a,100000)
In [80]: N = 3
In [81]: T = 40
# Approach #3
In [82]: %%timeit
...: m = a>T
...: out = np.flatnonzero(m[:-2] & m[1:-1] & m[2:])
1000 loops, best of 3: 1.83 ms per loop
# Approach #1
In [83]: %timeit np.flatnonzero(np.convolve(a>T, np.ones(N, dtype=int),'valid')>=N)
100 loops, best of 3: 10.9 ms per loop
# Approach #2
In [84]: %timeit np.flatnonzero(binary_erosion(a>T,np.ones(N, dtype=int), origin=-(N//2)))
100 loops, best of 3: 11.7 ms per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With