I have the following operations which uses numpy.where:
    mat = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int32)
    index = np.array([[1,0,0],[0,1,0],[0,0,1]])
    mat[np.where(index>0)] = 100
    print(mat)
How to implement the equivalent in TensorFlow?
mat = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int32)
index = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
tf_mat = tf.constant(mat)
tf_index = tf.constant(index)
indi = tf.where(tf_index>0)
tf_mat[indi] = -1   <===== not allowed 
                Assuming that what you want is to create a new tensor with some replaced elements, and not update a variable, you could do something like this:
import numpy as np
import tensorflow as tf
mat = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int32)
index = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
tf_mat = tf.constant(mat)
tf_index = tf.constant(index)
tf_mat = tf.where(tf_index > 0, -tf.ones_like(tf_mat), tf_mat)
with tf.Session() as sess:
    print(sess.run(tf_mat))
Output:
[[-1  2  3]
 [ 4 -1  6]
 [ 7  8 -1]]
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With