Consider the following setup.
Base class:
class Thing {
int f1;
int f2;
Thing(NO_INIT) {}
Thing(int n1 = 0, int n2 = 0): f1(n1),f2(n2) {}
virtual ~Thing() {}
virtual void doAction1() {}
virtual const char* type_name() { return "Thing"; }
}
And derived classes that are different only by implementation of methods above:
class Summator {
Summator(NO_INIT):Thing(NO_INIT) {}
virtual void doAction1() override { f1 += f2; }
virtual const char* type_name() override { return "Summator"; }
}
class Substractor {
Substractor(NO_INIT):Thing(NO_INIT) {}
virtual void doAction1() override { f1 -= f2; }
virtual const char* type_name() override { return "Substractor"; }
}
The task I have requires ability to change class (VTBL in this case) of existing objects on the fly. This is known as dynamic subclassing if I am not mistaken.
So I came up with the following function:
// marker used in inplace CTORs
struct NO_INIT {};
template <typename TO_T>
inline TO_T* turn_thing_to(Thing* p)
{
return ::new(p) TO_T(NO_INIT());
}
that does just that - it uses inplace new
to construct one object in place of another. Effectively this just changes vtbl pointer in objects. So this code works as expected:
Thing* thing = new Thing();
cout << thing->type_name() << endl; // "Thing"
turn_thing_to<Summator>(thing);
cout << thing->type_name() << endl; // "Summator"
turn_thing_to<Substractor>(thing);
cout << thing->type_name() << endl; // "Substractor"
The only major problems I have with this approach is that
a) each derived classes shall have special constructors like Thing(NO_INIT) {}
that shall do precisely nothing. And b) if I will want to add members like std::string to the Thing they will not work - only types that have NO_INIT constructors by themselves are allowed as members of the Thing.
Question: is there a better solution for such dynamic subclassing that solves 'a' and 'b' problems ? I have a feeling that std::move semantic may help to solve 'b' somehow but not sure.
Here is the ideone of the code.
(Already answered at RSDN http://rsdn.ru/forum/cpp/5437990.1)
There is a tricky way:
struct Base
{
int x, y, z;
Base(int i) : x(i), y(i+i), z(i*i) {}
virtual void whoami() { printf("%p base %d %d %d\n", this, x, y, z); }
};
struct Derived : Base
{
Derived(Base&& b) : Base(b) {}
virtual void whoami() { printf("%p derived %d %d %d\n", this, x, y, z); }
};
int main()
{
Base b(3);
Base* p = &b;
b.whoami();
p->whoami();
assert(sizeof(Base)==sizeof(Derived));
Base t(std::move(b));
Derived* d = new(&b)Derived(std::move(t));
printf("-----\n");
b.whoami(); // the compiler still believes it is Base, and calls Base::whoami
p->whoami(); // here it calls virtual function, that is, Derived::whoami
d->whoami();
};
Of course, it's UB.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With