Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Changing a specific column name in pandas DataFrame [duplicate]

Tags:

python

pandas

People also ask

How do I change a specific column name in Pandas?

You can use the rename() method of pandas. DataFrame to change column/index name individually. Specify the original name and the new name in dict like {original name: new name} to columns / index parameter of rename() . columns is for the column name, and index is for the index name.

Can you have duplicate column names in Pandas DataFrame?

Pandas, however, can be tricked into allowing duplicate column names. Duplicate column names are a problem if you plan to transfer your data set to another statistical language. They're also a problem because it will cause unanticipated and sometimes difficult to debug problems in Python.


A one liner does exist:

In [27]: df=df.rename(columns = {'two':'new_name'})

In [28]: df
Out[28]: 
  one three  new_name
0    1     a         9
1    2     b         8
2    3     c         7
3    4     d         6
4    5     e         5

Following is the docstring for the rename method.

Definition: df.rename(self, index=None, columns=None, copy=True, inplace=False)
Docstring:
Alter index and / or columns using input function or
functions. Function / dict values must be unique (1-to-1). Labels not
contained in a dict / Series will be left as-is.

Parameters
----------
index : dict-like or function, optional
    Transformation to apply to index values
columns : dict-like or function, optional
    Transformation to apply to column values
copy : boolean, default True
    Also copy underlying data
inplace : boolean, default False
    Whether to return a new DataFrame. If True then value of copy is
    ignored.

See also
--------
Series.rename

Returns
-------
renamed : DataFrame (new object)

Since inplace argument is available, you don't need to copy and assign the original data frame back to itself, but do as follows:

df.rename(columns={'two':'new_name'}, inplace=True)

What about?

df.columns[2] = "new_name"

If you know which column # it is (first / second / nth) then this solution posted on a similar question works regardless of whether it is named or unnamed, and in one line: https://stackoverflow.com/a/26336314/4355695

df.rename(columns = {list(df)[1]:'new_name'}, inplace=True)
# 1 is for second column (0,1,2..)