I'm trying to reproduce my Stata code in Python, and I was pointed in the direction of Pandas. I am, however, having a hard time wrapping my head around how to process the data.
Let's say I want to iterate over all values in the column head 'ID.' If that ID matches a specific number, then I want to change two corresponding values FirstName and LastName.
In Stata it looks like this:
replace FirstName = "Matt" if ID==103
replace LastName = "Jones" if ID==103
So this replaces all values in FirstName that correspond with values of ID == 103 to Matt.
In Pandas, I'm trying something like this
df = read_csv("test.csv")
for i in df['ID']:
if i ==103:
...
Not sure where to go from here. Any ideas?
You can replace values of all or selected columns based on the condition of pandas DataFrame by using DataFrame. loc[ ] property. The loc[] is used to access a group of rows and columns by label(s) or a boolean array. It can access and can also manipulate the values of pandas DataFrame.
Update column based on another column using CASE statement We use a CASE statement to specify new value of first_name column for each value of id column. This is a much better approach than using WHERE clause because with WHERE clause we can only change a column value to one new value.
One option is to use Python's slicing and indexing features to logically evaluate the places where your condition holds and overwrite the data there.
Assuming you can load your data directly into pandas
with pandas.read_csv
then the following code might be helpful for you.
import pandas
df = pandas.read_csv("test.csv")
df.loc[df.ID == 103, 'FirstName'] = "Matt"
df.loc[df.ID == 103, 'LastName'] = "Jones"
As mentioned in the comments, you can also do the assignment to both columns in one shot:
df.loc[df.ID == 103, ['FirstName', 'LastName']] = 'Matt', 'Jones'
Note that you'll need pandas
version 0.11 or newer to make use of loc
for overwrite assignment operations. Indeed, for older versions like 0.8 (despite what critics of chained assignment may say), chained assignment is the correct way to do it, hence why it's useful to know about even if it should be avoided in more modern versions of pandas.
Another way to do it is to use what is called chained assignment. The behavior of this is less stable and so it is not considered the best solution (it is explicitly discouraged in the docs), but it is useful to know about:
import pandas
df = pandas.read_csv("test.csv")
df['FirstName'][df.ID == 103] = "Matt"
df['LastName'][df.ID == 103] = "Jones"
You can use map
, it can map vales from a dictonairy or even a custom function.
Suppose this is your df:
ID First_Name Last_Name
0 103 a b
1 104 c d
Create the dicts:
fnames = {103: "Matt", 104: "Mr"}
lnames = {103: "Jones", 104: "X"}
And map:
df['First_Name'] = df['ID'].map(fnames)
df['Last_Name'] = df['ID'].map(lnames)
The result will be:
ID First_Name Last_Name
0 103 Matt Jones
1 104 Mr X
Or use a custom function:
names = {103: ("Matt", "Jones"), 104: ("Mr", "X")}
df['First_Name'] = df['ID'].map(lambda x: names[x][0])
The original question addresses a specific narrow use case. For those who need more generic answers here are some examples:
Given the dataframe below:
import pandas as pd
import numpy as np
df = pd.DataFrame([['dog', 'hound', 5],
['cat', 'ragdoll', 1]],
columns=['animal', 'type', 'age'])
In[1]:
Out[1]:
animal type age
----------------------
0 dog hound 5
1 cat ragdoll 1
Below we are adding a new description
column as a concatenation of other columns by using the +
operation which is overridden for series. Fancy string formatting, f-strings etc won't work here since the +
applies to scalars and not 'primitive' values:
df['description'] = 'A ' + df.age.astype(str) + ' years old ' \
+ df.type + ' ' + df.animal
In [2]: df
Out[2]:
animal type age description
-------------------------------------------------
0 dog hound 5 A 5 years old hound dog
1 cat ragdoll 1 A 1 years old ragdoll cat
We get 1 years
for the cat (instead of 1 year
) which we will be fixing below using conditionals.
Here we are replacing the original animal
column with values from other columns, and using np.where
to set a conditional substring based on the value of age
:
# append 's' to 'age' if it's greater than 1
df.animal = df.animal + ", " + df.type + ", " + \
df.age.astype(str) + " year" + np.where(df.age > 1, 's', '')
In [3]: df
Out[3]:
animal type age
-------------------------------------
0 dog, hound, 5 years hound 5
1 cat, ragdoll, 1 year ragdoll 1
A more flexible approach is to call .apply()
on an entire dataframe rather than on a single column:
def transform_row(r):
r.animal = 'wild ' + r.type
r.type = r.animal + ' creature'
r.age = "{} year{}".format(r.age, r.age > 1 and 's' or '')
return r
df.apply(transform_row, axis=1)
In[4]:
Out[4]:
animal type age
----------------------------------------
0 wild hound dog creature 5 years
1 wild ragdoll cat creature 1 year
In the code above the transform_row(r)
function takes a Series
object representing a given row (indicated by axis=1
, the default value of axis=0
will provide a Series
object for each column). This simplifies processing since you can access the actual 'primitive' values in the row using the column names and have visibility of other cells in the given row/column.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With