You can pass a function pointer, function object (or boost lambda) to std::sort to define a strict weak ordering of the elements of the container you want sorted.
However, sometimes (enough that I've hit this several times), you want to be able to chain "primitive" comparisons.
A trivial example would be if you were sorting a collection of objects that represent contact data. Sometimes you will want to sort by
last name, first name, area code. Other times
first name, last name- yet other times
age, first name, area code... etc
Now, you can certainly write an additional function object for each case, but that violates the DRY principle - especially if each comparison is less trivial.
It seems like you should be able to write a hierarchy of comparison functions - the low level ones do the single, primitive, comparisons (e.g. first name < first name), then higher level ones call the lower level ones in succession (probably chaining with && to make use of short circuit evaluation) to generate the composite functions.
The trouble with this approach is that std::sort takes a binary predicate - the predicate can only return a bool. So if you're composing them you can't tell if a "false" indicates equality or greater than. You can make your lower level predicates return an int, with three states - but then you would have to wrap those in higher level predicates before they could be used with std::sort on their own.
In all, these are not insurmountable problems. It just seems harder than it should be - and certainly invites a helper library implementation.
Therefore, does anyone know of any pre-existing library (esp. if it's a std or boost library) that can help here - of have any other thoughts on the matter?
[Update]
As mentioned in some of the comments - I've gone ahead and written my own implementation of a class to manage this. It's fairly minimal, and probably has some issues with it in general. but on that basis, for anyone interested, the class is here:
http://pastebin.com/f52a85e4f
And some helper functions (to avoid the need to specify template args) is here:
http://pastebin.com/fa03d66e
You could build a little chaining system like so:
struct Type {
string first, last;
int age;
};
struct CmpFirst {
bool operator () (const Type& lhs, const Type& rhs) { return lhs.first < rhs.first; }
};
struct CmpLast {
bool operator () (const Type& lhs, const Type& rhs) { return lhs.last < rhs.last; }
};
struct CmpAge {
bool operator () (const Type& lhs, const Type& rhs) { return lhs.age < rhs.age; }
};
template <typename First, typename Second>
struct Chain {
Chain(const First& f_, const Second& s_): f(f_), s(s_) {}
bool operator () (const Type& lhs, const Type& rhs) {
if(f(lhs, rhs))
return true;
if(f(rhs, lhs))
return false;
return s(lhs, rhs);
}
template <typename Next>
Chain <Chain, Next> chain(const Next& next) const {
return Chain <Chain, Next> (*this, next);
}
First f;
Second s;
};
struct False { bool operator() (const Type& lhs, const Type& rhs) { return false; } };
template <typename Op>
Chain <False, Op> make_chain(const Op& op) { return Chain <False, Op> (False(), op); }
Then to use it:
vector <Type> v; // fill this baby up
sort(v.begin(), v.end(), make_chain(CmpLast()).chain(CmpFirst()).chain(CmpAge()));
The last line is a little verbose, but I think it's clear what's intended.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With