When I run the below code it loads the web, but then it leaves an error message, it is because in some section there is no data, can a conditional help?
I uploaded the code but I do not know where to act, i am new on Dash and my knowledge in javascript is limited.
My main file
import dash
from dash.dependencies import Output, Input
import dash_core_components as dcc
import dash_html_components as html
import plotly
import random
import plotly.graph_objs as go
from collections import deque
import sqlite3
import pandas as pd
#popular topics: google, olympics, trump, gun, usa
app = dash.Dash(__name__)
app.layout = html.Div(
[ html.H2('Live Twitter Sentiment'),
dcc.Input(id='sentiment_term', value='trump', type='text'),
dcc.Graph(id='live-graph', animate=False),
dcc.Interval(
id='graph-update',
interval=1*1000
),
]
)
@app.callback(Output('live-graph', 'figure'),
[Input(component_id='sentiment_term', component_property='value')])
def update_graph_scatter(sentiment_term):
try:
conn = sqlite3.connect('twitter.db')
c = conn.cursor()
df = pd.read_sql("SELECT * FROM sentiment WHERE tweet LIKE ? ORDER BY unix DESC LIMIT 1000", conn, params=('%' + sentiment_term + '%',))
df.sort_values('unix', inplace=True)
df['sentiment_smoothed'] = df['sentiment'].rolling(int(len(df)/5)).mean()
df.dropna(inplace=True)
X = df.unix.values[-100:]
Y = df.sentiment_smoothed.values[-100:]
data = plotly.graph_objs.Scatter(
x=X,
y=Y,
name='Scatter',
mode= 'lines+markers'
)
return {'data': [data],'layout' : go.Layout(xaxis=dict(range=[min(X),max(X)]),
yaxis=dict(range=[min(Y),max(Y)]),
title='Term: {}'.format(sentiment_term))}
except Exception as e:
with open('errors.txt','a') as f:
f.write(str(e))
f.write('\n')
if __name__ == '__main__':
app.run_server(debug=True)
Sometimes Dash can struggle if the prop being updated by a callback hasn't been initialized. In this case, the figure
prop of the dcc.Graph
was never declared. Setting an explicit empty value, such as figure={}
is often enough to resolve this sort of error.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With