Python allows us to set up signal -handlers so when a particular signal arrives to our program we can have a behavior different from the default. For example when you run a program on the terminal and press Ctrl-C the default behavior is to quit the program.
Ctrl+C terminates the main thread, but because your threads aren't in daemon mode, they keep running, and that keeps the process alive. We can make them daemons:
f = FirstThread()
f.daemon = True
f.start()
s = SecondThread()
s.daemon = True
s.start()
But then there's another problem - once the main thread has started your threads, there's nothing else for it to do. So it exits, and the threads are destroyed instantly. So let's keep the main thread alive:
import time
while True:
time.sleep(1)
Now it will keep print 'first' and 'second' until you hit Ctrl+C.
Edit: as commenters have pointed out, the daemon threads may not get a chance to clean up things like temporary files. If you need that, then catch the KeyboardInterrupt
on the main thread and have it co-ordinate cleanup and shutdown. But in many cases, letting daemon threads die suddenly is probably good enough.
KeyboardInterrupt and signals are only seen by the process (ie the main thread)... Have a look at Ctrl-c i.e. KeyboardInterrupt to kill threads in python
I think it's best to call join()
on your threads when you expect them to die. I've taken the liberty to make the change your loops to end (you can add whatever cleanup needs are required to there as well). The variable die
is checked on each pass and when it's True
, the program exits.
import threading
import time
class MyThread (threading.Thread):
die = False
def __init__(self, name):
threading.Thread.__init__(self)
self.name = name
def run (self):
while not self.die:
time.sleep(1)
print (self.name)
def join(self):
self.die = True
super().join()
if __name__ == '__main__':
f = MyThread('first')
f.start()
s = MyThread('second')
s.start()
try:
while True:
time.sleep(2)
except KeyboardInterrupt:
f.join()
s.join()
An improved version of @Thomas K's answer:
is_any_thread_alive()
according to this gist, which can terminates the main()
automatically.Example codes:
import threading
def job1():
...
def job2():
...
def is_any_thread_alive(threads):
return True in [t.is_alive() for t in threads]
if __name__ == "__main__":
...
t1 = threading.Thread(target=job1,daemon=True)
t2 = threading.Thread(target=job2,daemon=True)
t1.start()
t2.start()
while is_any_thread_alive([t1,t2]):
time.sleep(0)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With