I thought universal reference (T&&
) is supposed to take any kind of reference. But the following doesn't work.
I run into this problem when I try to be const-correct in a library that I am writing. I am new to C++ and haven't seen something like this before.
test.cpp:
enum Cv_qualifier {
constant,
non_const
};
template <Cv_qualifier Cv> class A;
template<>
class A<Cv_qualifier::constant> {
public:
template<Cv_qualifier Cv2>
void t(const A<Cv2>&& out) {}
};
template <>
class A<Cv_qualifier::non_const> {
public:
template<Cv_qualifier Cv2>
void t(const A<Cv2>&& out) {}
};
int main()
{
A<Cv_qualifier::non_const> a;
A<Cv_qualifier::constant> b;
a.t(b);
}
Error (compiled with g++ test.cpp -std=c++11
):
test.cpp: In function ‘int main()’:
test.cpp:24:10: error: cannot bind ‘A<(Cv_qualifier)0u>’ lvalue to ‘const A<(Cv_qualifier)0u>&&’
a.t(b);
^
test.cpp:17:10: note: initializing argument 1 of ‘void A<(Cv_qualifier)1u>::t(const A<Cv2>&&) [with Cv_qualifier Cv2 = (Cv_qualifier)0u]’
void t(const A<Cv2>&& out) {}
^
By the way, in the actual program, the class A
does not own any actual data, and contain references to another class that actually hold the data. I hope this means I am not constantly create indirection/copy data when I allow the member function t
of class A
to accept temporary objects.
Universal reference, or forwarding reference, only happen because of reference collapsing. It work that way:
T&& & -> T&
T& && -> T&
T&& && -> T&&
That way, when you receive T&&
in a template function, the rvalue reference can collapse to other types of reference depending of the type of T
. In any other cases, when the collapsing don't happen, SomeType&&
will stay SomeType&&
and will be an rvalue reference.
With that said, if you want your function to support forwarding, you can do that:
template <Cv_qualifier Cv> struct A;
template<>
struct A<Cv_qualifier::constant> {
template<typename T>
void t(T&& out) {}
};
template <>
struct A<Cv_qualifier::non_const> {
template<typename T>
void t(T&& out) {}
};
Indeed, now the collapsing happen. If you want to extract the Cv_qualifier
value from T
, you can make yourself a type trait that do that:
template<typename>
struct CvValue;
template<Cv_qualifier cv>
struct CvValue<A<cv>> {
constexpr static Cv_qualifier value = cv;
};
Then, inside your function t
, you can do that:
// v----- This is a good practice to apply a constraint
template<typename T, std::void_t<decltype(CvValue<std::decay_t<T>>::value)>* = 0>
auto t(T&& out) {
constexpr auto cv = CvValue<std::decay_t<T>>::value;
// do whatever you want with cv
}
If you can't use C++17's std::void_t
, you can implement it like that:
template<typename...>
using void_t = void;
However, if you only want to test if T
is an A<...>
, use this:
template<typename>
struct is_A : std::false_type {};
template<Cv_qualifier cv>
struct is_A<A<cv>> : std::true_type {};
Don't forget, to use it with std::decay_t
:
template<typename T, std::enable_if_t<std::is_A<std::decay_t<T>>::value>* = 0>
void t(T&& out) {}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With