Our project uses a macro to make logging easy and simple in one-line statements, like so:
DEBUG_LOG(TRACE_LOG_LEVEL, "The X value = " << x << ", pointer = " << *x);
The macro translates the 2nd parameter into stringstream arguments, and sends it off to a regular C++ logger. This works great in practice, as it makes multi-parameter logging statements very concise. However, Scott Meyers has said, in Effective C++ 3rd Edition, "You can get all the efficiency of a macro plus all the predictable behavior and type safety of a regular function by using a template for an inline function" (Item 2). I know there are many issues with macro usage in C++ related to predictable behavior, so I'm trying to eliminate as many macros as possible in our code base.
My logging macro is defined similar to:
#define DEBUG_LOG(aLogLevel, aWhat) { \
if (isEnabled(aLogLevel)) { \
std::stringstream outStr; \
outStr<< __FILE__ << "(" << __LINE__ << ") [" << getpid() << "] : " << aWhat; \
logger::log(aLogLevel, outStr.str()); \
}
I've tried several times to rewrite this into something that doesn't use macros, including:
inline void DEBUG_LOG(LogLevel aLogLevel, const std::stringstream& aWhat) {
...
}
And...
template<typename WhatT> inline void DEBUG_LOG(LogLevel aLogLevel, WhatT aWhat) {
... }
To no avail (neither of the above 2 rewrites will compile against our logging code in the 1st example). Any other ideas? Can this be done? Or is it best to just leave it as a macro?
Logging remains one of the few places were you can't completely do away with macros, as you need call-site information (__LINE__
, __FILE__
, ...) that isn't available otherwise. See also this question.
You can, however, move the logging logic into a seperate function (or object) and provide just the call-site information through a macro. You don't even need a template function for this.
#define DEBUG_LOG(Level, What) \
isEnabled(Level) && scoped_logger(Level, __FILE__, __LINE__).stream() << What
With this, the usage remains the same, which might be a good idea so you don't have to change a load of code. With the &&
, you get the same short-curcuit behaviour as you do with your if
clause.
Now, the scoped_logger
will be a RAII object that will actually log what it gets when it's destroyed, aka in the destructor.
struct scoped_logger
{
scoped_logger(LogLevel level, char const* file, unsigned line)
: _level(level)
{ _ss << file << "(" << line << ") [" << getpid() << "] : "; }
std::stringstream& stream(){ return _ss; }
~scoped_logger(){ logger::log(_level, _ss.str()); }
private:
std::stringstream _ss;
LogLevel _level;
};
Exposing the underlying std::stringstream
object saves us the trouble of having to write our own operator<<
overloads (which would be silly). The need to actually expose it through a function is important; if the scoped_logger
object is a temporary (an rvalue), so is the std::stringstream
member and only member overloads of operator<<
will be found if we don't somehow transform it to an lvalue (reference). You can read more about this problem here (note that this problem has been fixed in C++11 with rvalue stream inserters). This "transformation" is done by calling a member function that simply returns a normal reference to the stream.
Small live example on Ideone.
No, it is not possible to rewrite this exact macro as a template since you are using operators (<<) in the macro, which can't be passed as a template argument or function argument.
We had the same issue and solved it with a class based approach, using a syntax like
DEBUG_LOG(TRACE_LOG_LEVEL) << "The X value = " << x << ", pointer = " << *x << logger::flush;
This would indeed require to rewrite the code (by using a regular expression) and introduce some class magic, but gives the additional benefit of greater flexibiliy (delayed output, output options per log level (to file or stdout) and things like that).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With