Each enum type has a corresponding integral type called the underlying type of the enum type. This underlying type shall be able to represent all the enumerator values defined in the enumeration. If the enum_base is present, it explicitly declares the underlying type.
Just like other data types in TypeScript, we can use enums as function parameters or return types, like this: enum Weekend { Friday = 1, Saturday, Sunday } function getDate(Day: string): Weekend { if ( Day === 'TGIF') { return Weekend.Friday; } } let DayType: Weekend = getDate('TGIF');
2.2. Inheritance Is Not Allowed for Enums.
We can convert an enum to string by calling the ToString() method of an Enum.
I think you can use std::underlying_type to know the underlying type, and then use cast:
#include <type_traits> //for std::underlying_type
typedef std::underlying_type<my_fields>::type utype;
utype a = static_cast<utype>(my_fields::field);
With this, you don't have to assume the underlying type, or you don't have to mention it in the definition of the enum class
like enum class my_fields : int { .... }
or so.
You can even write a generic convert function that should be able to convert any enum class
to its underlying integral type:
template<typename E>
constexpr auto to_integral(E e) -> typename std::underlying_type<E>::type
{
return static_cast<typename std::underlying_type<E>::type>(e);
}
then use it:
auto value = to_integral(my_fields::field);
auto redValue = to_integral(Color::Red);//where Color is an enum class!
And since the function is declared to be constexpr
, you can use it where constant expression is required:
int a[to_integral(my_fields::field)]; //declaring an array
std::array<int, to_integral(my_fields::field)> b; //better!
You cannot convert it implicitly, but an explicit cast is possible:
enum class my_fields : unsigned { field = 1 };
// ...
unsigned x = my_fields::field; // ERROR!
unsigned x = static_cast<unsigned>(my_fields::field); // OK
Also mind the fact, that the semicolon should be after the closed curly brace in your enum's definition, not before.
As others have pointed out there is no implicit cast, but you can use an explicit static_cast
. I use the following helper functions in my code to convert to and from an enum type and its underlying class.
template<typename EnumType>
constexpr inline decltype(auto) getIntegralEnumValue(EnumType enumValue)
{
static_assert(std::is_enum<EnumType>::value,"Enum type required");
using EnumValueType = std::underlying_type_t<EnumType>;
return static_cast<EnumValueType>(enumValue);
}
template<typename EnumType,typename IntegralType>
constexpr inline EnumType toEnum(IntegralType value)
{
static_assert(std::is_enum<EnumType>::value,"Enum type required");
static_assert(std::is_integral<IntegralType>::value, "Integer required");
return static_cast<EnumType>(value);
}
template<typename EnumType,typename UnaryFunction>
constexpr inline void setIntegralEnumValue(EnumType& enumValue, UnaryFunction integralWritingFunction)
{
// Since using reinterpret_cast on reference to underlying enum type is UB must declare underlying type value and write to it and then cast it to enum type
// See discussion on https://stackoverflow.com/questions/19476818/is-it-safe-to-reinterpret-cast-an-enum-class-variable-to-a-reference-of-the-unde
static_assert(std::is_enum<EnumType>::value,"Enum type required");
auto enumIntegralValue = getIntegralEnumValue(enumValue);
integralWritingFunction(enumIntegralValue);
enumValue = toEnum<EnumType>(enumIntegralValue);
}
Usage code
enum class MyEnum {
first = 1,
second
};
MyEnum myEnum = MyEnum::first;
std::cout << getIntegralEnumValue(myEnum); // prints 1
MyEnum convertedEnum = toEnum(1);
setIntegralEnumValue(convertedEnum,[](auto& integralValue) { ++integralValue; });
std::cout << getIntegralEnumValue(convertedEnum); // prints 2
With C++23 you'll finally get a library function for this:
std::to_underlying
It is already implemented in the standard libraries of GCC 11, Clang 13, and MSVC 19.30 (aka 2022 17.0).
Until you're able to use C++23 I recommend you (re)name any custom implementation to to_underlying
and place it between a #if !defined(__cpp_lib_to_underlying)
#endif
block, which is the associated feature test macro. This way you can simply ditch the code at some point in the future when C++23 becomes available for you.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With