So i have something like that:
template<unsigned int W,unsigned int H>
class Class
{
int data[W][H];
Class(const (&_data)[W][H])
{
for (int x=0;x<W;x++)
for (int y=0;y<H;y++)
data[x][y] = _data[x][y];
}
template<class... args>
Class()
{
/// black magic
}
}
What could i replace the "black magic", so the second constructor will accept W*H ints? Example:
Class<3,2> class1(1,2,3,4,5,6);
There are alternative answers which might be more practical and simpler to implement, but I'll show how you could actually do this with a compile-time for-loop for purposes of demonstrating black-magic.
Here is a compile-time for-loop.
/* Compile-time for-loop up to N. */
template <std::size_t N>
struct For {
/* Call f<I>(args...) N times. */
template <typename F, typename... Args>
void operator()(F &&f, Args &&... args) const {
Impl<0, N>()(std::forward<F>(f), std::forward<Args>(args)...);
}
private:
/* Forward declaration. */
template <std::size_t I, std::size_t End>
struct Impl;
/* Base case. Do nothing. */
template <std::size_t End>
struct Impl<End, End> {
template <typename F, typename... Args>
void operator()(F &&, Args &&...) const { /* Do nothing. */ }
}; // Impl<End, End>
/* Recursive case. Call f<I>(args...), then recurse into next step. */
template <std::size_t I, std::size_t End>
struct Impl {
template <typename F, typename... Args>
void operator()(F &&f, Args &&... args) const {
std::forward<F>(f).template operator()<I>(std::forward<Args>(args)...);
Impl<I + 1, End>()(std::forward<F>(f), std::forward<Args>(args)...);
}
}; // Impl<I, End>
}; // For<N>
Here is a simple use case of it.
struct Print {
template <std::size_t I>
void operator()(int x, int y) const {
std::cout << "Iteration " << I << ": " << x << ' ' << y << std::endl;
}
}; // Print
For<3>()(Print(), 1, 2);
Outputs
Iteration 0: 1 2
Iteration 1: 1 2
Iteration 2: 1 2
Now with this we can nest this compile-time for-loop just like how we could nest a run-time for-loop. Here is the Matrix class using this For<> template.
/* Defines an M by N Matrix, (Row by Col). */
template <std::size_t M, std::size_t N>
class Matrix {
public:
/* Our underlying M by N matrix. */
using Data = std::array<std::array<int, N>, M>;
/* Construct off of M * N arguments. */
template <typename... Args>
Matrix(Args &&... args) {
static_assert(sizeof...(Args) == M * N,
"The number of arguments provided must be M * N.");
ForEach(AssignImpl(),
data_,
std::forward_as_tuple(std::forward<Args>(args)...));
}
/* Print each element out to std::cout. */
void Write(std::ostream &strm) const {
ForEach(WriteImpl(), strm, data_);
}
private:
/* Our outer for loop. Call InnerFor() M times.
Resembles: 'for (std::size_t i = 0 ; i < M; ++i) {' */
template <typename F, typename... Args>
void ForEach(F &&f, Args &&... args) const {
For<M>()(InnerFor(), std::forward<F>(f), std::forward<Args>(args)...);
}
/* Our inner for loop. Call ForBody() N times.
Resembles: 'for (std::size_t j = 0; j < N; ++j) {' */
struct InnerFor {
template <std::size_t I, typename F, typename... Args>
void operator()(F &&f, Args &&... args) const {
For<N>()(ForBody<I>(),
std::forward<F>(f),
std::forward<Args>(args)...);
}
}; // InnerFor
/* The body of our for loop. Call f<I, J>(args...); */
template <std::size_t I>
struct ForBody {
template <std::size_t J, typename F, typename... Args>
void operator()(F &&f, Args &&... args) const {
std::forward<F>(f)
.template operator()<I, J>(std::forward<Args>(args)...);
}
}; // ForBody<I>
/* Given the M by N array and a tuple of length M * N, assign the array. */
struct AssignImpl {
template <std::size_t I, std::size_t J, typename Arg>
void operator()(Data &data, Arg &&arg) const {
data[I][J] = std::get<I * N + J>(std::forward<Arg>(arg));
}
}; // AssignImpl
/* Given an output stream and our data, print the data at (I, J). */
struct WriteImpl {
template <std::size_t I, std::size_t J>
void operator()(std::ostream &strm, const Data &data) const {
strm << data[I][J] << std::endl;
}
}; // WriteImpl
/* Our underlying M by N array. */
Data data_;
}; // Matrix
Here is a quick demonstration of construction and writing to std::cout
.
int main() {
Matrix<3, 2> matrix{101, 102,
201, 202,
301, 302};
matrix.Write(std::cout);
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With