Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Call apply-like function on each row of dataframe with multiple arguments from each row

Tags:

dataframe

r

People also ask

How do you apply a function to each row of a DataFrame?

Use apply() function when you wanted to update every row in pandas DataFrame by calling a custom function. In order to apply a function to every row, you should use axis=1 param to apply().

What is apply () in R?

The apply() collection is a part of R essential package. This family of functions helps us to apply a certain function to a certain data frame, list, or vector and return the result as a list or vector depending on the function we use.

How do you apply a function in a data frame?

DataFrame - apply() function. The apply() function is used to apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either the DataFrame's index (axis=0) or the DataFrame's columns (axis=1).


You can apply apply to a subset of the original data.

 dat <- data.frame(x=c(1,2), y=c(3,4), z=c(5,6))
 apply(dat[,c('x','z')], 1, function(x) sum(x) )

or if your function is just sum use the vectorized version:

rowSums(dat[,c('x','z')])
[1] 6 8

If you want to use testFunc

 testFunc <- function(a, b) a + b
 apply(dat[,c('x','z')], 1, function(x) testFunc(x[1],x[2]))

EDIT To access columns by name and not index you can do something like this:

 testFunc <- function(a, b) a + b
 apply(dat[,c('x','z')], 1, function(y) testFunc(y['z'],y['x']))

A data.frame is a list, so ...

For vectorized functions do.call is usually a good bet. But the names of arguments come into play. Here your testFunc is called with args x and y in place of a and b. The ... allows irrelevant args to be passed without causing an error:

do.call( function(x,z,...) testFunc(x,z), df )

For non-vectorized functions, mapply will work, but you need to match the ordering of the args or explicitly name them:

mapply(testFunc, df$x, df$z)

Sometimes apply will work - as when all args are of the same type so coercing the data.frame to a matrix does not cause problems by changing data types. Your example was of this sort.

If your function is to be called within another function into which the arguments are all passed, there is a much slicker method than these. Study the first lines of the body of lm() if you want to go that route.


Use mapply

> df <- data.frame(x=c(1,2), y=c(3,4), z=c(5,6))
> df
  x y z
1 1 3 5
2 2 4 6
> mapply(function(x,y) x+y, df$x, df$z)
[1] 6 8

> cbind(df,f = mapply(function(x,y) x+y, df$x, df$z) )
  x y z f
1 1 3 5 6
2 2 4 6 8

New answer with dplyr package

If the function that you want to apply is vectorized, then you could use the mutate function from the dplyr package:

> library(dplyr)
> myf <- function(tens, ones) { 10 * tens + ones }
> x <- data.frame(hundreds = 7:9, tens = 1:3, ones = 4:6)
> mutate(x, value = myf(tens, ones))
  hundreds tens ones value
1        7    1    4    14
2        8    2    5    25
3        9    3    6    36

Old answer with plyr package

In my humble opinion, the tool best suited to the task is mdply from the plyr package.

Example:

> library(plyr)
> x <- data.frame(tens = 1:3, ones = 4:6)
> mdply(x, function(tens, ones) { 10 * tens + ones })
  tens ones V1
1    1    4 14
2    2    5 25
3    3    6 36

Unfortunately, as Bertjan Broeksema pointed out, this approach fails if you don't use all the columns of the data frame in the mdply call. For example,

> library(plyr)
> x <- data.frame(hundreds = 7:9, tens = 1:3, ones = 4:6)
> mdply(x, function(tens, ones) { 10 * tens + ones })
Error in (function (tens, ones)  : unused argument (hundreds = 7)

Others have correctly pointed out that mapply is made for this purpose, but (for the sake of completeness) a conceptually simpler method is just to use a for loop.

for (row in 1:nrow(df)) { 
    df$newvar[row] <- testFunc(df$x[row], df$z[row]) 
}