Say I have the following data:
colA <- c("SampA", "SampB", "SampC")
colB <- c(21, 20, 30)
colC <- c(15, 14, 12)
colD <- c(10, 22, 18)
df <- data.frame(colA, colB, colC, colD)
df
# colA colB colC colD
# 1 SampA 21 15 10
# 2 SampB 20 14 22
# 3 SampC 30 12 18
I want to get the row means and standard deviations for the values in columns B-D.
I can calculate the rowMeans as follows:
library(dplyr)
df %>% select(., matches("colB|colC|colD")) %>% mutate(rmeans = rowMeans(.))
# colB colC colD rmeans
# 1 21 15 10 15.33333
# 2 20 14 22 18.66667
# 3 30 12 18 20.00000
But when I try to calculate the standard deviation using sd()
, it throws up an error.
df %>% select(., matches("colB|colC|colD")) %>% mutate(rsds = sapply(., sd(.)))
Error in is.data.frame(x) :
(list) object cannot be coerced to type 'double'
So my question is: how do I calculate the standard deviations here?
Edit: I tried sapply()
with sd()
having read the first answer here.
Additional edit: not necessarily looking for a 'tidy' solution (base R also works just fine).
I'm not sure how old/new dplyr
's c_across
functionality is relative to the prior answers on this page, but here's a solution that is almost directly cut and pasted from the documentation for dplyr::c_across
:
df %>%
rowwise() %>%
mutate(
mean = mean(c_across(colB:colD)),
sd = sd(c_across(colB:colD))
)
# A tibble: 3 x 6
# Rowwise:
colA colB colC colD mean sd
<fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 SampA 21 15 10 15.3 5.51
2 SampB 20 14 22 18.7 4.16
3 SampC 30 12 18 20 9.17
Try this (using), withrowSds
from the matrixStats
package,
library(dplyr)
library(matrixStats)
columns <- c('colB', 'colC', 'colD')
df %>%
mutate(Mean= rowMeans(.[columns]), stdev=rowSds(as.matrix(.[columns])))
Returns
colA colB colC colD Mean stdev
1 SampA 21 15 10 15.33333 5.507571
2 SampB 20 14 22 18.66667 4.163332
3 SampC 30 12 18 20.00000 9.165151
Your data
colA <- c("SampA", "SampB", "SampC")
colB <- c(21, 20, 30)
colC <- c(15, 14, 12)
colD <- c(10, 22, 18)
df <- data.frame(colA, colB, colC, colD)
df
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With