I'm new to Pandas, and as an exercise, I'm moving some old code / solutions to learn from it. In this case, I'm trying to calculate a synthetic index for product prices, which before it was calculated in SQL.
This is the data I've in the dataframe:
id weight date price
0 1 0.002796 2005-11-15 0.998298
1 1 0.002796 2005-11-16 1.014242
2 1 0.002796 2005-11-17 1.016452
3 1 0.002796 2005-11-18 1.026396
4 1 0.002796 2005-11-19 1.026047
5 1 0.002796 2005-11-20 1.024285
6 1 0.002796 2005-11-21 1.018764
7 1 0.002796 2005-11-22 1.033175
8 1 0.002796 2005-11-23 1.058509
9 1 0.002796 2005-11-24 1.061231
10 1 0.002796 2005-11-25 1.058137
11 1 0.002796 2005-11-26 0.999380
12 1 0.002796 2005-11-27 0.990504
13 1 0.002796 2005-11-28 0.993764
14 1 0.002796 2005-11-29 0.978754
15 1 0.002796 2005-11-30 0.992070
... ... ... ... ...
4085 1 0.002796 2017-01-21 0.857420
4086 1 0.002796 2017-01-22 0.848195
4087 1 0.002796 2017-01-23 0.791784
4088 1 0.002796 2017-01-24 0.846603
4089 1 0.002796 2017-01-25 0.878104
4090 1 0.002796 2017-01-26 0.806651
4091 1 0.002796 2017-01-27 0.849316
4092 1 0.002796 2017-01-28 0.826550
4093 1 0.002796 2017-01-29 0.848651
4094 1 0.002796 2017-01-30 0.829643
4095 1 0.002796 2017-01-31 0.837094
4096 1 0.002796 2017-02-01 0.846572
4097 1 0.002796 2017-02-02 0.800163
4098 1 0.002796 2017-02-03 0.820356
4099 1 0.002796 2017-02-04 0.818924
4100 1 0.002796 2017-02-05 0.822157
4101 1 0.002796 2017-02-06 0.787123
4102 1 0.002796 2017-02-07 0.796264
4103 1 0.002796 2017-02-08 0.797241
4104 1 0.002796 2017-02-09 0.818499
4105 1 0.002796 2017-02-10 0.810928
The synthetic index is calculated with daily returns, being the return for the day:
Rt = ( Price_day / Price_day_before) - 1
I've been reading about pandas, time series, etc, but I'm struggling to understand the specific operation to perform here; is this a rolling? How do I get the data for a given date and the date before??
the code is:
df['return'] = df['price']/df['price'].shift(1) - 1
the df.shift(1)
function in python is used as LEAD()
or LEG()
function in SQL.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With