I have a dataset that on one of its columns, each element is a list. I would like to flatten it, such that every list element would have a row of it's own.
I managed to solve it with iterrows
, dict
and append
(see below) but it is too slow with my true DF that is large.
Is there a way to make things faster?
I can consider replacing the column with list per element in another format (maybe hierarchical df? ) if that would make more sense.
EDIT: I have many columns, and some might change in the future. The only thing i know for sure is that I have the fields column. That's why I used dict
in my solution
A minimal example, creating a df to play with:
import StringIO
df = pd.read_csv(StringIO.StringIO("""
id|name|fields
1|abc|[qq,ww,rr]
2|efg|[zz,xx,rr]
"""), sep='|')
df.fields = df.fields.apply(lambda s: s[1:-1].split(','))
print df
resulting df:
id name fields
0 1 abc [qq, ww, rr]
1 2 efg [zz, xx, rr]
my (slow) solution:
new_df = pd.DataFrame(index=[], columns=df.columns)
for _, i in df.iterrows():
flattened_d = [dict(i.to_dict(), fields=c) for c in i.fields]
new_df = new_df.append(flattened_d )
Resulting with
id name fields
0 1.0 abc qq
1 1.0 abc ww
2 1.0 abc rr
0 2.0 efg zz
1 2.0 efg xx
2 2.0 efg rr
You can use numpy
for better performance:
Both solutions use mainly numpy.repeat
.
from itertools import chain
vals = df.fields.str.len()
df1 = pd.DataFrame({
"id": np.repeat(df.id.values,vals),
"name": np.repeat(df.name.values, vals),
"fields": list(chain.from_iterable(df.fields))})
df1 = df1.reindex_axis(df.columns, axis=1)
print (df1)
id name fields
0 1 abc qq
1 1 abc ww
2 1 abc rr
3 2 efg zz
4 2 efg xx
5 2 efg rr
Another solution:
df[['id','name']].values
converts columns to numpy array
and duplicate them by numpy.repeat
, then stack values in lists
by numpy.hstack
and add it by numpy.column_stack
.
df1 = pd.DataFrame(np.column_stack((df[['id','name']].values.
repeat(list(map(len,df.fields)),axis=0),np.hstack(df.fields))),
columns=df.columns)
print (df1)
id name fields
0 1 abc qq
1 1 abc ww
2 1 abc rr
3 2 efg zz
4 2 efg xx
5 2 efg rr
More general solution is filter out column fields
and then add it to DataFrame
constructor, because always last column:
cols = df.columns[df.columns != 'fields'].tolist()
print (cols)
['id', 'name']
df1 = pd.DataFrame(np.column_stack((df[cols].values.
repeat(list(map(len,df.fields)),axis=0),np.hstack(df.fields))),
columns=cols + ['fields'])
print (df1)
id name fields
0 1 abc qq
1 1 abc ww
2 1 abc rr
3 2 efg zz
4 2 efg xx
5 2 efg rr
If your CSV is many thousands of lines long, then using_string_methods
(below)
may be faster than using_iterrows
or using_repeat
:
With
csv = 'id|name|fields'+("""
1|abc|[qq,ww,rr]
2|efg|[zz,xx,rr]"""*10000)
In [210]: %timeit using_string_methods(csv)
10 loops, best of 3: 100 ms per loop
In [211]: %timeit using_itertuples(csv)
10 loops, best of 3: 119 ms per loop
In [212]: %timeit using_repeat(csv)
10 loops, best of 3: 126 ms per loop
In [213]: %timeit using_iterrows(csv)
1 loop, best of 3: 1min 7s per loop
So for a 10000-line CSV, using_string_methods
is over 600x faster than using_iterrows
, and marginally faster than using_repeat
.
import pandas as pd
try: from cStringIO import StringIO # for Python2
except ImportError: from io import StringIO # for Python3
def using_string_methods(csv):
df = pd.read_csv(StringIO(csv), sep='|', dtype=None)
other_columns = df.columns.difference(['fields']).tolist()
fields = (df['fields'].str.extract(r'\[(.*)\]', expand=False)
.str.split(r',', expand=True))
df = pd.concat([df.drop('fields', axis=1), fields], axis=1)
result = (pd.melt(df, id_vars=other_columns, value_name='field')
.drop('variable', axis=1))
result = result.dropna(subset=['field'])
return result
def using_iterrows(csv):
df = pd.read_csv(StringIO(csv), sep='|')
df.fields = df.fields.apply(lambda s: s[1:-1].split(','))
new_df = pd.DataFrame(index=[], columns=df.columns)
for _, i in df.iterrows():
flattened_d = [dict(i.to_dict(), fields=c) for c in i.fields]
new_df = new_df.append(flattened_d )
return new_df
def using_repeat(csv):
df = pd.read_csv(StringIO(csv), sep='|')
df.fields = df.fields.apply(lambda s: s[1:-1].split(','))
cols = df.columns[df.columns != 'fields'].tolist()
df1 = pd.DataFrame(np.column_stack(
(df[cols].values.repeat(list(map(len,df.fields)),axis=0),
np.hstack(df.fields))), columns=cols + ['fields'])
return df1
def using_itertuples(csv):
df = pd.read_csv(StringIO(csv), sep='|')
df.fields = df.fields.apply(lambda s: s[1:-1].split(','))
other_columns = df.columns.difference(['fields']).tolist()
data = []
for tup in df.itertuples():
data.extend([[getattr(tup, col) for col in other_columns]+[field]
for field in tup.fields])
return pd.DataFrame(data, columns=other_columns+['field'])
csv = 'id|name|fields'+("""
1|abc|[qq,ww,rr]
2|efg|[zz,xx,rr]"""*10000)
Generally, fast NumPy/Pandas operations are possible only when the data is in a
native NumPy dtype (such as int64
or float64
, or strings.) Once you place
lists (a non-native NumPy dtype) in a DataFrame the jig is up -- you are forced
to use Python-speed loops to process the lists.
So to improve performance, you need to avoid placing lists in a DataFrame.
using_string_methods
loads the fields
data as strings:
df = pd.read_csv(StringIO(csv), sep='|', dtype=None)
and avoid using the apply
method (which is generally as slow as a plain Python loop):
df.fields = df.fields.apply(lambda s: s[1:-1].split(','))
Instead, it uses faster vectorized string methods to break the strings up into separate columns:
fields = (df['fields'].str.extract(r'\[(.*)\]', expand=False)
.str.split(r',', expand=True))
Once you have the fields in separate columns, you can use pd.melt
to reshape
the DataFrame into the desired format.
pd.melt(df, id_vars=['id', 'name'], value_name='field')
By the way, you might be interested to see that with a slight modification using_iterrows
can be just as fast as using_repeat
. I show the changes in using_itertuples
.
df.itertuples
tends to be slightly faster than df.iterrows
, but the difference is minor. The majority of the speed gain is achieved by avoiding calling df.append
in a for-loop since that leads to quadratic copying.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With