Given a set of points in the plane, a notion of alpha-shape, for a given positive number alpha, is defined by finding the Delaunay triangulation and deleting any triangles for which at least one edge exceeds alpha in length. Here's an example using d3:
http://bl.ocks.org/gka/1552725
The problem is that, when there are thousands of points, simply drawing all the interior triangles is too slow for an interactive visualization, so I'd like to just find the bounding polygons. This isn't so simple, because as you can see from that example sometimes there might be two such polygons.
As a simplification, suppose some clustering has been performed so that there's guaranteed to be a unique bounding polygon for each triangulation. What's the best way to find this bounding polygon? In particular, the edges have to be ordered consistently and it must support the possibility of "holes" (think a torus or donut shape--this is expressible in GeoJSON).
Description. An alphaShape creates a bounding area or volume that envelops a set of 2-D or 3-D points. You can manipulate the alphaShape object to tighten or loosen the fit around the points to create a nonconvex region. You also can add or remove points or suppress holes or regions.
a — Critical alpha radius a is the value of the alpha radius that produces an alpha shape, which either encloses all points (if type is 'all-points' ), or encloses all points within a single region (if type is 'one-region' ).
In computational geometry, an alpha shape, or α-shape, is a family of piecewise linear simple curves in the Euclidean plane associated with the shape of a finite set of points. They were first defined by Edelsbrunner, Kirkpatrick & Seidel (1983).
A concave hull of a geometry is a possibly concave geometry that encloses the vertices of the input geometry. In the general case the concave hull is a Polygon. The polygon will not contain holes unless the optional param_allow_holes argument is specified as true.
Here is some Python code that does what you need. I modified the alpha-shape (concave hull) computation from here so that it doesn't insert inner edges (the only_outer
parameter). I also made it self-contained so it doesn't depend on an outside library.
from scipy.spatial import Delaunay
import numpy as np
def alpha_shape(points, alpha, only_outer=True):
"""
Compute the alpha shape (concave hull) of a set of points.
:param points: np.array of shape (n,2) points.
:param alpha: alpha value.
:param only_outer: boolean value to specify if we keep only the outer border
or also inner edges.
:return: set of (i,j) pairs representing edges of the alpha-shape. (i,j) are
the indices in the points array.
"""
assert points.shape[0] > 3, "Need at least four points"
def add_edge(edges, i, j):
"""
Add a line between the i-th and j-th points,
if not in the list already
"""
if (i, j) in edges or (j, i) in edges:
# already added
assert (j, i) in edges, "Can't go twice over same directed edge right?"
if only_outer:
# if both neighboring triangles are in shape, it is not a boundary edge
edges.remove((j, i))
return
edges.add((i, j))
tri = Delaunay(points)
edges = set()
# Loop over triangles:
# ia, ib, ic = indices of corner points of the triangle
for ia, ib, ic in tri.simplices:
pa = points[ia]
pb = points[ib]
pc = points[ic]
# Computing radius of triangle circumcircle
# www.mathalino.com/reviewer/derivation-of-formulas/derivation-of-formula-for-radius-of-circumcircle
a = np.sqrt((pa[0] - pb[0]) ** 2 + (pa[1] - pb[1]) ** 2)
b = np.sqrt((pb[0] - pc[0]) ** 2 + (pb[1] - pc[1]) ** 2)
c = np.sqrt((pc[0] - pa[0]) ** 2 + (pc[1] - pa[1]) ** 2)
s = (a + b + c) / 2.0
area = np.sqrt(s * (s - a) * (s - b) * (s - c))
circum_r = a * b * c / (4.0 * area)
if circum_r < alpha:
add_edge(edges, ia, ib)
add_edge(edges, ib, ic)
add_edge(edges, ic, ia)
return edges
If you run it with the following test code you will get this figure:
from matplotlib.pyplot import *
# Constructing the input point data
np.random.seed(0)
x = 3.0 * np.random.rand(2000)
y = 2.0 * np.random.rand(2000) - 1.0
inside = ((x ** 2 + y ** 2 > 1.0) & ((x - 3) ** 2 + y ** 2 > 1.0) & ((x - 1.5) ** 2 + y ** 2 > 0.09))
points = np.vstack([x[inside], y[inside]]).T
# Computing the alpha shape
edges = alpha_shape(points, alpha=0.25, only_outer=True)
# Plotting the output
figure()
axis('equal')
plot(points[:, 0], points[:, 1], '.')
for i, j in edges:
plot(points[[i, j], 0], points[[i, j], 1])
show()
Create a graph in which the nodes correspond to Delaunay triangles and in which there is a graph edge between two triangles if and only if they share two vertices.
Compute the connected components of the graph.
For each connected component, find all of the nodes that have less than three adjacent nodes (that is, those that have degree 0, 1, or 2). These correspond to the boundary triangles. We define the edges of a boundary triangle that are not shared with another triangle to be the boundary edges of that boundary triangle.
As an example, I have highlighted these boundary triangles in your example "question mark" Delaunay triangulation:
By definition, every boundary triangle is adjacent to at most two other boundary triangles. The boundary edges of boundary triangles form cycles. You can simply traverse those cycles to determine polygon shapes for the boundaries. This will also work for polygons with holes if you keep them in mind in your implementation.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With