Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Caffe net.predict() outputs random results (GoogleNet)

I used pretrained GoogleNet from https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet and finetuned it with my own data (~ 100k images, 101 classes). After one day training I achieved 62% in top-1 and 85% in top-5 classification and try to use this network to predict several images.

I just followed example from https://github.com/BVLC/caffe/blob/master/examples/classification.ipynb,

Here is my Python code:

import caffe
import numpy as np


caffe_root = './caffe'


MODEL_FILE = 'caffe/models/bvlc_googlenet/deploy.prototxt'
PRETRAINED = 'caffe/models/bvlc_googlenet/bvlc_googlenet_iter_200000.caffemodel'

caffe.set_mode_gpu()

net = caffe.Classifier(MODEL_FILE, PRETRAINED,
               mean=np.load('ilsvrc_2012_mean.npy').mean(1).mean(1),
               channel_swap=(2,1,0),
               raw_scale=255,
               image_dims=(224, 224))

def caffe_predict(path):
        input_image = caffe.io.load_image(path)
        print path
        print input_image
        prediction = net.predict([input_image])


        print prediction
        print "----------"

        print 'prediction shape:', prediction[0].shape
        print 'predicted class:', prediction[0].argmax()


        proba = prediction[0][prediction[0].argmax()]
        ind = prediction[0].argsort()[-5:][::-1] # top-5 predictions


        return prediction[0].argmax(), proba, ind

In my deploy.prototxt I changed the last layer only to predict my 101 classes.

layer {
  name: "loss3/classifier"
  type: "InnerProduct"
  bottom: "pool5/7x7_s1"
  top: "loss3/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 101
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prob"
  type: "Softmax"
  bottom: "loss3/classifier"
  top: "prob"
}

Here is the distribution of softmax output:

[[ 0.01106235  0.00343131  0.00807581  0.01530041  0.01077161  0.0081002
   0.00989228  0.00972753  0.00429183  0.01377776  0.02028225  0.01209726
   0.01318955  0.00669979  0.00720005  0.00838189  0.00335461  0.01461464
   0.01485041  0.00543212  0.00400191  0.0084842   0.02134697  0.02500303
   0.00561895  0.00776423  0.02176422  0.00752334  0.0116104   0.01328687
   0.00517187  0.02234021  0.00727272  0.02380056  0.01210031  0.00582192
   0.00729601  0.00832637  0.00819836  0.00520551  0.00625274  0.00426603
   0.01210176  0.00571806  0.00646495  0.01589645  0.00642173  0.00805364
   0.00364388  0.01553882  0.01549598  0.01824486  0.00483241  0.01231962
   0.00545738  0.0101487   0.0040346   0.01066607  0.01328133  0.01027429
   0.01581303  0.01199994  0.00371804  0.01241552  0.00831448  0.00789811
   0.00456275  0.00504562  0.00424598  0.01309276  0.0079432   0.0140427
   0.00487625  0.02614347  0.00603372  0.00892296  0.00924052  0.00712763
   0.01101298  0.00716757  0.01019373  0.01234141  0.00905332  0.0040798
   0.00846442  0.00924353  0.00709366  0.01535406  0.00653238  0.01083806
   0.01168014  0.02076091  0.00542234  0.01246306  0.00704035  0.00529556
   0.00751443  0.00797437  0.00408798  0.00891858  0.00444583]]

It seems just like random distribution with no sense.

Thank you for any help or hint and best regards, Alex

like image 568
Rachnog Avatar asked Nov 01 '22 02:11

Rachnog


1 Answers

The solution is really simple: I just forgot to rename the last layer in deploy file:

layer {
  name: "loss3/classifier"
  type: "InnerProduct"
  bottom: "pool5/7x7_s1"
  top: "loss3/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
like image 173
Rachnog Avatar answered Nov 12 '22 21:11

Rachnog