Since c++17 std library support parallel algorithm, I thought it would be the go-to option for us, but after comparing with tbb
and openmp
, I changed my mind, I found the std library is much slower.
By this post, I want to ask for professional advice about whether I should abandon the std library's parallel algorithm, and use tbb
or openmp
, thanks!
Env:
Benchmark code:
#include <algorithm>
#include <cmath>
#include <chrono>
#include <execution>
#include <iostream>
#include <tbb/parallel_for.h>
#include <vector>
const size_t N = 1000000;
double std_for() {
auto values = std::vector<double>(N);
size_t n_par = 5lu;
auto indices = std::vector<size_t>(n_par);
std::iota(indices.begin(), indices.end(), 0lu);
size_t stride = static_cast<size_t>(N / n_par) + 1;
std::for_each(
std::execution::par,
indices.begin(),
indices.end(),
[&](size_t index) {
int begin = index * stride;
int end = (index+1) * stride;
for (int i = begin; i < end; ++i) {
values[i] = 1.0 / (1 + std::exp(-std::sin(i * 0.001)));
}
});
double total = 0;
for (double value : values)
{
total += value;
}
return total;
}
double tbb_for() {
auto values = std::vector<double>(N);
tbb::parallel_for(
tbb::blocked_range<int>(0, values.size()),
[&](tbb::blocked_range<int> r) {
for (int i=r.begin(); i<r.end(); ++i) {
values[i] = 1.0 / (1 + std::exp(-std::sin(i * 0.001)));
}
});
double total = 0;
for (double value : values) {
total += value;
}
return total;
}
double omp_for()
{
auto values = std::vector<double>(N);
#pragma omp parallel for
for (int i=0; i<values.size(); ++i) {
values[i] = 1.0 / (1 + std::exp(-std::sin(i * 0.001)));
}
double total = 0;
for (double value : values) {
total += value;
}
return total;
}
double seq_for()
{
auto values = std::vector<double>(N);
for (int i=0; i<values.size(); ++i) {
values[i] = 1.0 / (1 + std::exp(-std::sin(i * 0.001)));
}
double total = 0;
for (double value : values) {
total += value;
}
return total;
}
void time_it(double(*fn_ptr)(), const std::string& fn_name) {
auto t1 = std::chrono::high_resolution_clock::now();
auto rez = fn_ptr();
auto t2 = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::microseconds>( t2 - t1 ).count();
std::cout << fn_name << ", rez = " << rez << ", dur = " << duration << std::endl;
}
int main(int argc, char** argv) {
std::string op(argv[1]);
if (op == "std_for") {
time_it(&std_for, op);
} else if (op == "omp_for") {
time_it(&omp_for, op);
} else if (op == "tbb_for") {
time_it(&tbb_for, op);
} else if (op == "seq_for") {
time_it(&seq_for, op);
}
}
Compile options:
g++ --std=c++17 -O3 b.cpp -ltbb -I /usr/local/include -L /usr/local/lib -fopenmp
Results:
std_for, rez = 500106, dur = 11119
tbb_for, rez = 500106, dur = 7372
omp_for, rez = 500106, dur = 4781
seq_for, rez = 500106, dur = 27910
We can see that std_for
is faster than seq_for
(sequential for-loop), but it's still much slower than tbb
and openmp
.
As people suggested in comments, I run each for
separately to be fair. The above code is updated, and results as follows,
>>> ./a.out seq_for
seq_for, rez = 500106, dur = 29885
>>> ./a.out tbb_for
tbb_for, rez = 500106, dur = 10619
>>> ./a.out omp_for
omp_for, rez = 500106, dur = 10052
>>> ./a.out std_for
std_for, rez = 500106, dur = 12423
And like ppl said, running the 4 versions in a row is not fair, compared to the previous results.
You already found that it matters what exactly is to be measured and how this is done. Your final task will certainty be quite different from this simple exercise and not entirely reflect the results found here.
Besides caching and warming-up that are affected by the sequence of doing tasks (you studied this explicitly in your updated question) there is also another issue in your example you should consider.
The actual parallel code is what matters. If this does not determine your performance/runtime than parallelization is not the right solution. But in your example you measure also resource allocation, initialization and final computation. If those drive the real costs in your final application, again, parallelization is not the silver bullet. Thus, for a fair comparison and to really measure the actual parallel code execution performance. I suggest to modify your code along this line (sorry, I don't have openmp installed) and continue your studies:
#include <algorithm>
#include <cmath>
#include <chrono>
#include <execution>
#include <iostream>
#include <tbb/parallel_for.h>
#include <vector>
const size_t N = 10000000; // #1
void std_for(std::vector<double>& values,
std::vector<size_t> const& indices,
size_t const stride) {
std::for_each(
std::execution::par,
indices.begin(),
indices.end(),
[&](size_t index) {
int begin = index * stride;
int end = (index+1) * stride;
for (int i = begin; i < end; ++i) {
values[i] = 1.0 / (1 + std::exp(-std::sin(i * 0.001)));
}
});
}
void tbb_for(std::vector<double>& values) {
tbb::parallel_for(
tbb::blocked_range<int>(0, values.size()),
[&](tbb::blocked_range<int> r) {
for (int i=r.begin(); i<r.end(); ++i) {
values[i] = 1.0 / (1 + std::exp(-std::sin(i * 0.001)));
}
});
}
/*
double omp_for()
{
auto values = std::vector<double>(N);
#pragma omp parallel for
for (int i=0; i<values.size(); ++i) {
values[i] = 1.0 / (1 + std::exp(-std::sin(i * 0.001)));
}
double total = 0;
for (double value : values) {
total += value;
}
return total;
}
*/
void seq_for(std::vector<double>& values)
{
for (int i=0; i<values.size(); ++i) {
values[i] = 1.0 / (1 + std::exp(-std::sin(i * 0.001)));
}
}
void time_it(void(*fn_ptr)(std::vector<double>&), const std::string& fn_name) {
std::vector<double> values = std::vector<double>(N);
auto t1 = std::chrono::high_resolution_clock::now();
fn_ptr(values);
auto t2 = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::microseconds>( t2 - t1 ).count();
double total = 0;
for (double value : values) {
total += value;
}
std::cout << fn_name << ", res = " << total << ", dur = " << duration << std::endl;
}
void time_it_std(void(*fn_ptr)(std::vector<double>&, std::vector<size_t> const&, size_t const), const std::string& fn_name) {
std::vector<double> values = std::vector<double>(N);
size_t n_par = 5lu; // #2
auto indices = std::vector<size_t>(n_par);
std::iota(indices.begin(), indices.end(), 0lu);
size_t stride = static_cast<size_t>(N / n_par) + 1;
auto t1 = std::chrono::high_resolution_clock::now();
fn_ptr(values, indices, stride);
auto t2 = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::microseconds>( t2 - t1 ).count();
double total = 0;
for (double value : values) {
total += value;
}
std::cout << fn_name << ", res = " << total << ", dur = " << duration << std::endl;
}
int main(int argc, char** argv) {
std::string op(argv[1]);
if (op == "std_for") {
time_it_std(&std_for, op);
// } else if (op == "omp_for") {
//time_it(&omp_for, op);
} else if (op == "tbb_for") {
time_it(&tbb_for, op);
} else if (op == "seq_for") {
time_it(&seq_for, op);
}
}
On my (slow) system this results in:
I note here that the difference from seq_for to tbb_for has further increased. It is now ~4x while in your example it looks more like ~3x. And std_for is still about 20..30% slower than tbb_for.
However, there are further parameters. After increasing N (see #1) by a factor of 10 (ok, this is not very important) and n_par (see #2) from 5 to 100 (this is important) the results are
Here std_for is on-par with tbb_for!
Thus, to answer your question: I clearly would NOT discard c++17 std parallelization right away.
Perhaps you already know, but something I don't see mentioned here is the fact that (at least for gcc and clang) the PSTL is actually implemented using/backended by TBB, OpenMP (currently on clang, only, I believe), or a sequential version of it.
I'm guessing you're using libc++ since you are on Mac; as far as I know, for Linux at least, the LLVM distributions do not come with the PSTL enabled, and if building PSTL and libcxx/libcxxabi from source, it defaults to a sequential backend.
https://github.com/llvm/llvm-project/blob/main/pstl/CMakeLists.txt
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/pstl/pstl_config.h
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With