Consider the following code:
namespace ConsoleApplication
{
using NamespaceOne;
using NamespaceTwo;
class Program
{
static void Main(string[] args)
{
// Compilation error. MyEnum is an ambiguous reference
MethodNamespace.MethodClass.Frobble(MyEnum.foo);
}
}
}
namespace MethodNamespace
{
public static class MethodClass
{
public static void Frobble(NamespaceOne.MyEnum val)
{
System.Console.WriteLine("Frobbled a " + val.ToString());
}
}
}
namespace NamespaceOne
{
public enum MyEnum
{
foo, bar, bat, baz
}
}
namespace NamespaceTwo
{
public enum MyEnum
{
foo, bar, bat, baz
}
}
The compiler complains that MyEnum is an ambiguous reference in the call to Frobble(). Since there is no ambiguity in what method is being called, one might expect the compiler to resolve the type reference based on the method signature. Why doesn't it?
Please note that I'm not saying that the compiler should do this. I'm confident that there is a very good reason that it doesn't. I would simply like to know what that reason is.
C programming language is a machine-independent programming language that is mainly used to create many types of applications and operating systems such as Windows, and other complicated programs such as the Oracle database, Git, Python interpreter, and games and is considered a programming foundation in the process of ...
In the real sense it has no meaning or full form. It was developed by Dennis Ritchie and Ken Thompson at AT&T bell Lab. First, they used to call it as B language then later they made some improvement into it and renamed it as C and its superscript as C++ which was invented by Dr. Stroustroupe.
C is a general-purpose language that most programmers learn before moving on to more complex languages. From Unix and Windows to Tic Tac Toe and Photoshop, several of the most commonly used applications today have been built on C. It is easy to learn because: A simple syntax with only 32 keywords.
C is more difficult to learn than JavaScript, but it's a valuable skill to have because most programming languages are actually implemented in C. This is because C is a “machine-level” language. So learning it will teach you how a computer works and will actually make learning new languages in the future easier.
Paul is correct. In most situation in C# we reason "from inside to outside".
there is no ambiguity in what method is being called,
That it is unambiguous to you is irrelevant to the compiler. The task of overload resolution is to determine whether the method group Frobble
can be resolved to a specific method given known arguments. If we can't determine what the argument types are then we don't even try to do overload resolution.
Method groups that just happen to contain only one method are not special in this regard. We still have to have good arguments before overload resolution can succeed.
There are cases where we reason from "outside to inside", namely, when doing type analysis of lambdas. Doing so makes the overload resolution algorithm exceedingly complicated and gives the compiler a problem to solve that is at least NP-HARD in bad cases. But in most scenarios we want to avoid that complexity and expense; expressions are analyzed by analyzing child subexpressions before their parents, not the other way around.
More generally: C# is not a "when the program is ambiguous use heuristics to make guesses about what the programmer probably meant" language. It is a "inform the developer that their program is unclear and possibly broken" language. The portions of the language that are designed to try to resolve ambiguous situations -- like overload resolution or method type inference or implicitly typed arrays -- are carefully designed so that the algorithms have clear rules that take versioning and other real-world aspects into account. Bailing out as soon as one part of the program is ambiguous is one way we achieve this design goal.
If you prefer a more "forgiving" language that tries to figure out what you meant, VB or JScript might be better languages for you. They are more "do what I meant not what I said" languages.
I believe its because the C# compiler won't typically backtrack.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With