I implement game server where I need to both read and write. So I accept incoming connection and start reading from it using aio_read() but when I need to send something, I stop reading using aio_cancel() and then use aio_write(). Within write's callback I resume reading. So, I do read all the time but when I need to send something - I pause reading.
It works for ~20% of time - in other case call to aio_cancel() fails with "Operation now in progress" - and I cannot cancel it (even within permanent while cycle). So, my added write operation never happens.
How to use these functions well? What did I missed?
EDIT: Used under Linux 2.6.35. Ubuntu 10 - 32 bit.
Example code:
void handle_read(union sigval sigev_value) { /* handle data or disconnection */ }
void handle_write(union sigval sigev_value) { /* free writing buffer memory */ }
void start()
{
const int acceptorSocket = socket(AF_INET, SOCK_STREAM, 0);
struct sockaddr_in addr;
memset(&addr, 0, sizeof(struct sockaddr_in));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY;
addr.sin_port = htons(port);
bind(acceptorSocket, (struct sockaddr*)&addr, sizeof(struct sockaddr_in));
listen(acceptorSocket, SOMAXCONN);
struct sockaddr_in address;
socklen_t addressLen = sizeof(struct sockaddr_in);
for(;;)
{
const int incomingSocket = accept(acceptorSocket, (struct sockaddr*)&address, &addressLen);
if(incomingSocket == -1)
{ /* handle error ... */}
else
{
//say socket to append outcoming messages at writing:
const int currentFlags = fcntl(incomingSocket, F_GETFL, 0);
if(currentFlags < 0) { /* handle error ... */ }
if(fcntl(incomingSocket, F_SETFL, currentFlags | O_APPEND) == -1) { /* handle another error ... */ }
//start reading:
struct aiocb* readingAiocb = new struct aiocb;
memset(readingAiocb, 0, sizeof(struct aiocb));
readingAiocb->aio_nbytes = MY_SOME_BUFFER_SIZE;
readingAiocb->aio_fildes = socketDesc;
readingAiocb->aio_buf = mySomeReadBuffer;
readingAiocb->aio_sigevent.sigev_notify = SIGEV_THREAD;
readingAiocb->aio_sigevent.sigev_value.sival_ptr = (void*)mySomeData;
readingAiocb->aio_sigevent.sigev_notify_function = handle_read;
if(aio_read(readingAiocb) != 0) { /* handle error ... */ }
}
}
}
//called at any time from server side:
send(void* data, const size_t dataLength)
{
//... some thread-safety precautions not needed here ...
const int cancellingResult = aio_cancel(socketDesc, readingAiocb);
if(cancellingResult != AIO_CANCELED)
{
//this one happens ~80% of the time - embracing previous call to permanent while cycle does not help:
if(cancellingResult == AIO_NOTCANCELED)
{
puts(strerror(aio_return(readingAiocb))); // "Operation now in progress"
/* don't know what to do... */
}
}
//otherwise it's okay to send:
else
{
aio_write(...);
}
}
If you wish to have separate AIO queues for reads and writes, so that a write issued later can execute before a read issued earlier, then you can use dup()
to create a duplicate of the socket, and use one to issue reads and the other to issue writes.
However, I second the recommendations to avoid AIO entirely and simply use an epoll()
-driven event loop with non-blocking sockets. This technique has been shown to scale to high numbers of clients - if you are getting high CPU usage, profile it and find out where that's happening, because the chances are that it's not your event loop that's the culprit.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With